Experimental Characterization of a Large-Range Parallel Kinematic XYZ Flexure Mechanism

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Shorya Awtar ◽  
Jason Quint ◽  
John Ustick

Abstract Previously, we reported the conceptual design of a novel parallel-kinematic flexure mechanism that provides large and decoupled motions in the X, Y, and Z directions, along with good actuator isolation, and small parasitic error motions (Awtar, S., Ustick, J., and Sen, S., 2012, “An XYZ Parallel-Kinematic Flexure Mechanism With Geometrically Decoupled Degrees of Freedom,” ASME J. Mech. Rob., 5(1), p. 015001). This paper presents the detailed design and fabrication of a high-precision experimental setup to characterize and validate the motion attributes of this proposed flexure design via comprehensive measurements. The unique aspects of this experimental setup include a novel modular construction and exact-constraint assembly of the flexure mechanism from 12 identical parallelogram flexure modules. The flexure mechanism along with the sensing and actuation setup in the experiment is designed to enable large range (10 mm) in each direction. Experimental measurements and finite-elements analysis demonstrate <3% variation in motion direction stiffness, 20.4% lost motion, <11.6% cross-axis error, <3.3% actuator isolation, and <9.5 mrad motion stage rotation over the entire 10 mm × 10 mm × 10 mm range of motion.

2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Shorya Awtar ◽  
John Ustick ◽  
Shiladitya Sen

A novel parallel-kinematic flexure mechanism that provides highly decoupled motions along the three translational directions (X, Y, and Z) and high stiffness along the three rotational directions (θx, θy, and θz) is presented. Geometric decoupling ensures large motion range along each translational direction and enables integration with large-stroke ground-mounted linear actuators or generators, depending on the application. The proposed design, which is based on a systematic arrangement of multiple rigid stages and parallelogram flexure modules, is analyzed via nonlinear finite elements analysis (FEA). A proof-of-concept prototype is fabricated to validate the predicted large range and decoupled motion capabilities. The analysis and the hardware prototype demonstrate an XYZ motion range of 10 mm × 10 mm × 10 mm. Over this motion range, the nonlinear FEA predicts cross-axis errors of less than 7.8%, parasitic rotations less than 10.8 mrad, less than 14.4% lost motion, actuator isolation better than 1.5%, and no perceptible motion direction stiffness variation.


Author(s):  
Shorya Awtar ◽  
John Ustick ◽  
Shiladitya Sen

We present the constraint-based design of a novel parallel kinematic flexure mechanism that provides highly decoupled motions along the three translational directions (X, Y, and Z) and high stiffness along the three rotational directions (θx, θy, and θz). The geometric decoupling ensures large motion range along each translational direction and enables integration with large-stroke ground-mounted linear actuators or generators, depending on the application. The proposed design, which is based on a systematic arrangement of multiple rigid stages and parallelogram flexure modules, is analyzed via non-linear finite element analysis. A proof-of-concept prototype of the flexure mechanism is fabricated to validate its large range and decoupled motion capability. The analyses as well as the hardware demonstrate an XYZ motion range of 10 mm × 10 mm × 10 mm. Over this motion range, the non-linear FEA predicts a cross-axis error of less than 3%, parasitic rotations less than 2 mrad, less than 4% lost motion, actuator isolation less than 1.5%, and no perceptible motion direction stiffness variation. Ongoing work includes non-linear closed-form analysis and experimental measurement of these error motion and stiffness characteristics.


Author(s):  
Mohammad Olfatnia ◽  
Leqing Cui ◽  
Pankaj Chopra ◽  
Shorya Awtar

This paper presents a micro XY stage that employs electrostatic comb-drive actuators and achieves a bi-directional displacement range greater than 225 μm per motion axis. The proposed XY stage design comprises four rigid stages (ground, motion stage, and two intermediate stages) interconnected via flexure modules. The motion stage, which has two translational degrees of freedom, is connected to two independent single degree of freedom intermediate stages via respective parallelogram (P) transmission flexures. The intermediate stages are connected to the ground via respective Clamped paired Double Parallelogram (C-DP-DP) guidance flexures. The C-DP-DP flexure, unlike conventional flexures such as the paired Double Parallelogram flexure (DP-DP), provides high bearing direction stiffness (Kb) while maintaining low motion direction stiffness (Km) over a large range of motion direction displacement. This helps delay the onset of sideways instability in the comb-drive actuators that are integrated with the intermediate stages, thereby offering significantly greater actuation stroke compared to existing designs. The presented work includes closed-form stiffness analysis of the proposed micro XY stage, finite elements simulation, and experimental measurements of its static and dynamic behavior.


Author(s):  
Mohammad Olfatnia ◽  
Siddharth Sood ◽  
Shorya Awtar

This paper reports in-plane electrostatic comb-drive actuators with stroke as large as 245 μm, achieved by employing a novel Clamped Paired Double Parallelogram (C-DP-DP) flexure mechanism. For a given flexure beam length (L1), comb gap (G), and actuation voltage (V), this is currently the largest comb-drive actuator stroke reported in the literature. The C-DP-DP flexure mechanism design offers high bearing direction stiffness (Kx) while maintaining low motion direction stiffness (Ky), over a large range of motion direction displacement. The resulting high (Kx /Ky) ratio mitigates the on-set of sideways snap-in instability, thereby offering significantly greater actuation stroke compared to existing designs. Further improvement is achieved by reinforcing the individual beams in this flexure mechanism. While the traditional Paired Double Parallelogram (DP-DP) flexure design with G = 3 μm, L1 = 1 mm results in a 50 μm stroke before snap-in, the reinforced C-DP-DP design with G = 3μm achieves a stroke of 141 μm. The same C-DP-DP flexure design provides a 215 μm stroke with G = 4 μm, and a 245 μm stroke with G = 6 μm. The presented work includes closed-form stiffness values for the reinforced C-DP-DP flexure, a design procedure for selecting dimensions of the overall comb-drive actuator, micro-fabrication of some representative actuators, and experimental measurements demonstrating the large stroke.


Author(s):  
Shorya Awtar ◽  
Gaurav Parmar

Achieving large motion range (> 1 mm) along with nanometric motion quality (< 10 nm), simultaneously, has been a key challenge in nanopositioning systems. Practical limitations associated with the individual physical components (flexure bearing, actuators, and sensors) and their integration, particularly in the case of multi-axis systems, have restricted the range of current nanopositioning systems to about 100 μm. This paper presents a novel physical system layout, with a parallel-kinematic XY flexure mechanism at its heart, that provides a high degree of decoupling between the two motion axes by avoiding geometric over-constraints, provides actuator isolation that allows the use of large-stroke single-axis actuators, and enables a complementary end-point sensing scheme that employs commonly available sensors. These attributes help achieve an unprecedented 10 mm × 10 mm motion range in the proposed nanopositioning system. Having overcome the physical system design challenges, a dynamic model of proposed nanopositioning system is created and verified via system identification methods. In particular, dynamic non-linearities associated with the large displacements of the flexure mechanism and resulting controls challenges are identified. The physical system is fabricated, assembled, and tested to validate its simultaneous large range and nanometric motion capabilities. Preliminary closed-loop test results, which highlight the potential of this new design configuration, are presented.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110344
Author(s):  
Jinhai Gao ◽  
Xiaoqiang Han ◽  
Lina Hao ◽  
Ligang Chen

Compared with the traditional rigid mechanism, the flexible mechanism has more advantages, which play an important role in critical situations such as microsurgery, IC (integrated circuit) fabrication/detection, and some precision operating environment. Especially, there is an increasing need for 3-DOF (degrees-of-freedom) compliant translational micro-platform (CTMP) providing good performance characteristics with large motion range, low cross coupling, and high spatial density. Decoupled topology design of the CTMP can easily realize these merits without increasing the difficulty of controlling. This paper proposes a new three DOF compliant hybrid micromanipulator which have large range of motion up to 100 μm × 100 μm × 100 μm in the direction in the dimension of 90 mm × 90 mm × 50 mm, smaller cross-axis coupling (the max coupling only 2.5%) than the initial XY compliant platform in XY axial.


2013 ◽  
Vol 5 (2) ◽  
Author(s):  
Shorya Awtar ◽  
Gaurav Parmar

Achieving large motion range (>1 mm) along with nanometric motion quality (<10 nm) simultaneously has been a key challenge in nanopositioning systems. Practical limitations associated with the individual physical components (bearing, actuators, and sensors) and their integration, particularly in the case of multi-axis systems, have restricted the range of currently available nanopositioning systems to approximately 100 μm per axis. This paper presents a novel physical system layout, comprising a bearing, actuators, and sensors, that enables large range XY nanopositioning. The bearing is based on a parallel-kinematic XY flexure mechanism that provides a high degree of geometric decoupling between the two motion axes by avoiding geometric over-constraint, provides actuator isolation that allows the use of large-stroke single-axis actuators, and enables a complementary end-point sensing scheme using commonly available sensors. These attributes help achieve 10 mm × 10 mm motion range in the proposed nanopositioning system. Having overcome the physical system design challenges, a dynamic model of the proposed nanopositioning system is created and verified via system identification. In particular, dynamic nonlinearities associated with the large displacements of the flexure mechanism and resulting controls challenges are identified. The physical system is fabricated, assembled, and tested to validate its simultaneous large range and nanometric motion capabilities. Preliminary closed-loop test results, which highlight the potential as well as pending challenges associated with this new design configuration, are presented.


2006 ◽  
Vol 129 (8) ◽  
pp. 816-830 ◽  
Author(s):  
Shorya Awtar ◽  
Alexander H. Slocum

This paper presents parallel kinematic XY flexure mechanism designs based on systematic constraint patterns that allow large ranges of motion without causing over-constraint or significant error motions. Key performance characteristics of XY mechanisms such as mobility, cross-axis coupling, parasitic errors, actuator isolation, drive stiffness, lost motion, and geometric sensitivity, are discussed. The standard double parallelogram flexure module is used as a constraint building-block and its nonlinear force-displacement characteristics are employed in analytically predicting the performance characteristics of two proposed XY flexure mechanism designs. Fundamental performance tradeoffs, including those resulting from the nonlinear load-stiffening and elastokinematic effects, in flexure mechanisms are highlighted. Comparisons between closed-form linear and nonlinear analyses are presented to emphasize the inadequacy of the former. It is shown that geometric symmetry in the constraint arrangement relaxes some of the design tradeoffs, resulting in improved performance. The nonlinear analytical predictions are validated by means of computational finite element analysis and experimental measurements.


2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


2009 ◽  
Vol 131 (09) ◽  
pp. 32-36
Author(s):  
James G. Skakoon

This article discusses the significance of knowing exact constraint in successful design. Although not traditionally taught in mechanical engineering curricula, and not universally known among mechanical engineers, principles of exact constraint have been around for over a century. Designers of precision instruments have for decades used exact constraint, without which they simply would not achieve the precision required by many devices. Exact constraint has a well-developed theory applicable for design engineers. Applying it improves designs by avoiding over-constraint. Over-constrained designs lead to high stresses, tight tolerances, looseness, binding, and difficult assembly. Exact constraint is easier to picture in two dimensions than in three. In two dimensions, there are three degrees of freedom: two translations and one rotation. Some useful compromises to exact constraint are pinned and bolted connections, ball bearings, and tapered roller bearings. Another is in-situ adjustment of over-constraint as in, for example, the thread-adjusted foot pads of a clothes dryer or washing machine.


Sign in / Sign up

Export Citation Format

Share Document