Design of a Large Range XY Nanopositioning System

Author(s):  
Shorya Awtar ◽  
Gaurav Parmar

Achieving large motion range (> 1 mm) along with nanometric motion quality (< 10 nm), simultaneously, has been a key challenge in nanopositioning systems. Practical limitations associated with the individual physical components (flexure bearing, actuators, and sensors) and their integration, particularly in the case of multi-axis systems, have restricted the range of current nanopositioning systems to about 100 μm. This paper presents a novel physical system layout, with a parallel-kinematic XY flexure mechanism at its heart, that provides a high degree of decoupling between the two motion axes by avoiding geometric over-constraints, provides actuator isolation that allows the use of large-stroke single-axis actuators, and enables a complementary end-point sensing scheme that employs commonly available sensors. These attributes help achieve an unprecedented 10 mm × 10 mm motion range in the proposed nanopositioning system. Having overcome the physical system design challenges, a dynamic model of proposed nanopositioning system is created and verified via system identification methods. In particular, dynamic non-linearities associated with the large displacements of the flexure mechanism and resulting controls challenges are identified. The physical system is fabricated, assembled, and tested to validate its simultaneous large range and nanometric motion capabilities. Preliminary closed-loop test results, which highlight the potential of this new design configuration, are presented.

2013 ◽  
Vol 5 (2) ◽  
Author(s):  
Shorya Awtar ◽  
Gaurav Parmar

Achieving large motion range (>1 mm) along with nanometric motion quality (<10 nm) simultaneously has been a key challenge in nanopositioning systems. Practical limitations associated with the individual physical components (bearing, actuators, and sensors) and their integration, particularly in the case of multi-axis systems, have restricted the range of currently available nanopositioning systems to approximately 100 μm per axis. This paper presents a novel physical system layout, comprising a bearing, actuators, and sensors, that enables large range XY nanopositioning. The bearing is based on a parallel-kinematic XY flexure mechanism that provides a high degree of geometric decoupling between the two motion axes by avoiding geometric over-constraint, provides actuator isolation that allows the use of large-stroke single-axis actuators, and enables a complementary end-point sensing scheme using commonly available sensors. These attributes help achieve 10 mm × 10 mm motion range in the proposed nanopositioning system. Having overcome the physical system design challenges, a dynamic model of the proposed nanopositioning system is created and verified via system identification. In particular, dynamic nonlinearities associated with the large displacements of the flexure mechanism and resulting controls challenges are identified. The physical system is fabricated, assembled, and tested to validate its simultaneous large range and nanometric motion capabilities. Preliminary closed-loop test results, which highlight the potential as well as pending challenges associated with this new design configuration, are presented.


Author(s):  
Shorya Awtar ◽  
John Ustick ◽  
Shiladitya Sen

We present the constraint-based design of a novel parallel kinematic flexure mechanism that provides highly decoupled motions along the three translational directions (X, Y, and Z) and high stiffness along the three rotational directions (θx, θy, and θz). The geometric decoupling ensures large motion range along each translational direction and enables integration with large-stroke ground-mounted linear actuators or generators, depending on the application. The proposed design, which is based on a systematic arrangement of multiple rigid stages and parallelogram flexure modules, is analyzed via non-linear finite element analysis. A proof-of-concept prototype of the flexure mechanism is fabricated to validate its large range and decoupled motion capability. The analyses as well as the hardware demonstrate an XYZ motion range of 10 mm × 10 mm × 10 mm. Over this motion range, the non-linear FEA predicts a cross-axis error of less than 3%, parasitic rotations less than 2 mrad, less than 4% lost motion, actuator isolation less than 1.5%, and no perceptible motion direction stiffness variation. Ongoing work includes non-linear closed-form analysis and experimental measurement of these error motion and stiffness characteristics.


2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Shorya Awtar ◽  
John Ustick ◽  
Shiladitya Sen

A novel parallel-kinematic flexure mechanism that provides highly decoupled motions along the three translational directions (X, Y, and Z) and high stiffness along the three rotational directions (θx, θy, and θz) is presented. Geometric decoupling ensures large motion range along each translational direction and enables integration with large-stroke ground-mounted linear actuators or generators, depending on the application. The proposed design, which is based on a systematic arrangement of multiple rigid stages and parallelogram flexure modules, is analyzed via nonlinear finite elements analysis (FEA). A proof-of-concept prototype is fabricated to validate the predicted large range and decoupled motion capabilities. The analysis and the hardware prototype demonstrate an XYZ motion range of 10 mm × 10 mm × 10 mm. Over this motion range, the nonlinear FEA predicts cross-axis errors of less than 7.8%, parasitic rotations less than 10.8 mrad, less than 14.4% lost motion, actuator isolation better than 1.5%, and no perceptible motion direction stiffness variation.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Shorya Awtar ◽  
Jason Quint ◽  
John Ustick

Abstract Previously, we reported the conceptual design of a novel parallel-kinematic flexure mechanism that provides large and decoupled motions in the X, Y, and Z directions, along with good actuator isolation, and small parasitic error motions (Awtar, S., Ustick, J., and Sen, S., 2012, “An XYZ Parallel-Kinematic Flexure Mechanism With Geometrically Decoupled Degrees of Freedom,” ASME J. Mech. Rob., 5(1), p. 015001). This paper presents the detailed design and fabrication of a high-precision experimental setup to characterize and validate the motion attributes of this proposed flexure design via comprehensive measurements. The unique aspects of this experimental setup include a novel modular construction and exact-constraint assembly of the flexure mechanism from 12 identical parallelogram flexure modules. The flexure mechanism along with the sensing and actuation setup in the experiment is designed to enable large range (10 mm) in each direction. Experimental measurements and finite-elements analysis demonstrate &lt;3% variation in motion direction stiffness, 20.4% lost motion, &lt;11.6% cross-axis error, &lt;3.3% actuator isolation, and &lt;9.5 mrad motion stage rotation over the entire 10 mm × 10 mm × 10 mm range of motion.


Author(s):  
Mohammad Olfatnia ◽  
Siddharth Sood ◽  
Shorya Awtar

This paper reports in-plane electrostatic comb-drive actuators with stroke as large as 245 μm, achieved by employing a novel Clamped Paired Double Parallelogram (C-DP-DP) flexure mechanism. For a given flexure beam length (L1), comb gap (G), and actuation voltage (V), this is currently the largest comb-drive actuator stroke reported in the literature. The C-DP-DP flexure mechanism design offers high bearing direction stiffness (Kx) while maintaining low motion direction stiffness (Ky), over a large range of motion direction displacement. The resulting high (Kx /Ky) ratio mitigates the on-set of sideways snap-in instability, thereby offering significantly greater actuation stroke compared to existing designs. Further improvement is achieved by reinforcing the individual beams in this flexure mechanism. While the traditional Paired Double Parallelogram (DP-DP) flexure design with G = 3 μm, L1 = 1 mm results in a 50 μm stroke before snap-in, the reinforced C-DP-DP design with G = 3μm achieves a stroke of 141 μm. The same C-DP-DP flexure design provides a 215 μm stroke with G = 4 μm, and a 245 μm stroke with G = 6 μm. The presented work includes closed-form stiffness values for the reinforced C-DP-DP flexure, a design procedure for selecting dimensions of the overall comb-drive actuator, micro-fabrication of some representative actuators, and experimental measurements demonstrating the large stroke.


2021 ◽  
Vol 13 (12) ◽  
pp. 168781402110344
Author(s):  
Jinhai Gao ◽  
Xiaoqiang Han ◽  
Lina Hao ◽  
Ligang Chen

Compared with the traditional rigid mechanism, the flexible mechanism has more advantages, which play an important role in critical situations such as microsurgery, IC (integrated circuit) fabrication/detection, and some precision operating environment. Especially, there is an increasing need for 3-DOF (degrees-of-freedom) compliant translational micro-platform (CTMP) providing good performance characteristics with large motion range, low cross coupling, and high spatial density. Decoupled topology design of the CTMP can easily realize these merits without increasing the difficulty of controlling. This paper proposes a new three DOF compliant hybrid micromanipulator which have large range of motion up to 100 μm × 100 μm × 100 μm in the direction in the dimension of 90 mm × 90 mm × 50 mm, smaller cross-axis coupling (the max coupling only 2.5%) than the initial XY compliant platform in XY axial.


2015 ◽  
Vol 7 (4) ◽  
Author(s):  
Jingjun Yu ◽  
Yan Xie ◽  
Zhenguo Li ◽  
Guangbo Hao

There is an increasing need for XY compliant parallel micromanipulators (CPMs) providing good performance characteristics such as large motion range, well-constrained cross-axis coupling, and parasitic rotation. Decoupled topology design of the CPMs can easily realize these merits without increasing the difficulty of controlling. This paper proposes an improved 4-PP model on the basis of a classical 4-PP model and both of them are selected for manufacturing and testing to verify the effectiveness of the improvement. It has shown from experimental results that there is a large improvement on the performances of improved 4-PP compliant parallel manipulator (CPM): large range of motion up to 5 mm × 5 mm in the unidirection in the dimension of 311 mm × 311 mm × 24 mm, smaller compliance fluctuation (only 36.63% of that of the initial 4-PP model), smaller cross-axis coupling (only 28.10% of that of the initial 4-PP model generated by a single-axis 5 mm actuation), smaller in-plane parasitic yaw (only 57.14% of that of the initial 4-PP model generated by double-axis 5 mm actuation).


2017 ◽  
Vol 68 (10) ◽  
pp. 2373-2377
Author(s):  
Mihaela Monica Scutariu ◽  
Vlad Danila ◽  
Corina Ciupilan ◽  
Oana Elena Ciurcanu

Anesthesia and the degree of control over the perception of pain depends on the personality of the individual, the socio-economic conditions, potential previous painful experiences and, last but not least, on fatigue and fear of the dentist. The perception of pain in patients is closely connected to their mental state. Pain is defined as a sensation of discomfort, with wide variations, both in quality and intensity, for different people in seemingly identical conditions; an unpleasant sensitive and emotional phenomena connected to the threat of a wound or caused in the tissues or described in the terms of this disease. The essential element of any type of anesthesia is analgesia, an effect which in some cases cannot be achived, due to the patient�s particularities or the physician�s lack of experience in anesthesia. Locoregional anesthesia (LRA) represents the blocking of the nociceptive sensitive and sympathetic autonomic afferents as well as that of motor efferents at the level of peripheral nerves� axons, by means of local anesthetic. To achieve the set purpose, we carried out a study on a representative human sample comprised of 10.123 patients treated in the Oral and Maxillofacial Surgery Clinic (Ambulatory) from the County Clinic Emergency Hospital St. Spiridon Iasi, between 01.01.2015-31.12.2016. The reason for the exclusion of certain categories of patients in the reseach was: the patients with a special conditions background require individual pre-anesthesia schemes, personalised for the nature of the pre-existing general condition, which must be further approved by the attending specialist physician : cardiologist, internist, diabetologist; children under 18 years old, with a high degree of anxiety; a high precentage of elderly patients, over 60 years old, possess a combination of general issues, thus requiring a special approach. The thoroughness lying at the core of the anesthetic practice, most especially the safegurading of a technical accuracy in the performance of anesthesia [12,], instead of improvisations, the lack of anatomical and stomatological training in general and the resulting inefficiency as such, is the underlying in-depth structuring element of this paper.


2020 ◽  
pp. 239965442096524
Author(s):  
Mariska JM Bottema ◽  
Simon R Bush ◽  
Peter Oosterveer

The Thai aquaculture sector faces a range of production, market and financial risks that extend beyond the private space of farms to include public spaces and shared resources. The Thai state has attempted to manage these shared risks through its Plang Yai (or ‘Big Area’) agricultural extension program. Using the lens of territorialization, this paper investigates how, through the Plang Yai program, risk management is institutionalized through spatially explicit forms of collaboration amongst farmers and between farmers and (non-)state actors. We focus on how four key policy instruments brought together under Plang Yai delimited multiple territories of risk management over shrimp and tilapia production in Chantaburi and Chonburi provinces. Our findings demonstrate how these policy instruments address risks through dissimilar but overlapping territories that are selectively biased toward facilitating the individual management of production risks, whilst enabling both the individual and collective management of market and financial risks. This raises questions about the suitability of addressing aquaculture risks by controlling farmer behavior through state-led designation of singular, spatially explicit areas. The findings also indicate the multiple roles of the state in territorializing risk management, providing a high degree of flexibility, which is especially valuable in landscapes shared by many users, connected to (global) value chains and facing diverse risks. In doing so we demonstrate that understanding the territorialization of production landscapes in a globalizing world requires a dynamic approach recognizing the multiplicity of territories that emerge in risk management processes.


2021 ◽  
Vol 11 (2) ◽  
pp. 75
Author(s):  
Jan Amos Jelinek

The Earth’s shape concept develops as consecutive cognitive problems (e.g., the location of people and trees on the spherical Earth) are gradually resolved. Establishing the order of problem solving may be important for the organisation of teaching situations. This study attempted to determine the sequence of problems to be resolved based on tasks included in the EARTH2 test. The study covered a group of 444 children between 5 and 10 years of age. It captured the order in which children solve cognitive problems on the way to constructing a science-like concept. The test results were compared with previous studies. The importance of cultural influences connected to significant differences (24%) in test results was emphasised. Attention was drawn to the problem of the consistency of the mental model approach highlighted in the literature. The analysis of the individual sets of answers provided a high level of consistency of indications referring to the same model (36%), emphasising the importance of the concept of mental models.


Sign in / Sign up

Export Citation Format

Share Document