scholarly journals Cost-Effective Additive Manufacturing of Ambient Pressure-dried Silica Aerogel

Author(s):  
Zipeng Guo ◽  
Ruizhe Yang ◽  
Tianjiao Wang ◽  
Lu An ◽  
Shenqiang Ren ◽  
...  

Abstract The conventional manufacturing processes of aerogel insulation material is largely relying on the supercritical drying, which suffers from issues of massive energy consumption, high-cost equipment, and prolonged processing time. With the consideration of large market demand of the aerogel insulation material in the next decade, a low-cost and scalable fabrication technique is highly desired. In this paper, a direct ink writing (DIW) method is used to three-dimensionally fabricate the silica aerogel insulation material, followed by room-temperature and ambient pressure drying. Compared to the supercritical drying and freeze-drying, the reported method significantly reduces the fabrication time and costs. The cost-effective DIW technique offers the capability to print complex hollow internal structures, coupled with the porous structure, is found to be beneficial to the thermal insulation property. The addition of fiber to the ink assures the durability of the fabricated product, without sacrificing the thermal insulation performance. The foam ink preparation methods and the printability are demonstrated in this paper, along with the printing of complex three-dimensional geometries. The thermal insulation performance of the printed objects is characterized, and the mechanical properties are also examined. The proposed approach is found to have 56% reduction in the processing time. The printed silica aerogels exhibit a low thermal conductivity of 0.053 W m−1 K−1.

Author(s):  
Zipeng Guo ◽  
Ruizhe Yang ◽  
Tianjiao Wang ◽  
Lu An ◽  
Shenqiang Ren ◽  
...  

Abstract The conventional manufacturing process of aerogel insulation material relies largely on the supercritical drying, which suffers from issues of massive energy consumption, high-cost equipment and prolonged processing time. With the consideration of large market demand of the aerogel insulation material in the next decade, a low-cost and scalable fabrication technique is highly desired. In this paper, a direct ink writing (DIW) method is used to three-dimensionally fabricate the silica aerogel insulation material, followed by room-temperature and ambient pressure drying. Compared to the supercritical drying and freeze-drying, the reported method significantly reduces the fabrication time and costs. The cost-effective DIW technique offers the capability to print complex hollow internal structures, coupled with the porous structure, is found to be beneficial to the thermal insulation property. The addition of fiber to the ink assures the durability of the fabricated product. The foam ink preparation methods and the printability are demonstrated in this paper, along with the printed samples for characterizing thermal insulation performance and mechanical properties.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 993 ◽  
Author(s):  
Lei Shang ◽  
Yang Lyu ◽  
Wenbo Han

Tetraethyl orthosilicate was selected as a matrix of heat insulating materials among three silanes, and an anti-infrared radiation fiber was chosen as a reinforcement for silica aerogel insulation composite. The silica aerogel was combined well and evenly distributed in the anti-infrared radiation fiber. The heat insulation effect was improved with the increase in thickness of the aerogel insulation material, as determined by the self-made aerospace insulation material insulation performance test equipment. The 15 mm and 30 mm thick thermal insulation material heated at 250 °C for 3 h, the temperatures at the cold surface were about 80 °C and 60 °C, respectively, and the temperatures at 150 mm above the cold surface were less than 60 °C and 50 °C, respectively. The silica aerogel composites with various thicknesses showed good thermal insulation stability. The silica insulation composite with a thickness of 15 mm exhibited good heat insulation performance, meets the thermal insulation requirements of general equipment compartments under low-temperature and long-term environmental conditions. The thermal conductivity of prepared silica aerogel composite was 0.0191 W·m−1·k−1 at room temperature and 0.0489 W·m−1·k−1 at 500 °C.


2016 ◽  
Vol 697 ◽  
pp. 445-448
Author(s):  
Hao Ran Sun ◽  
Si Chao Zhang ◽  
Shu Guang Chen ◽  
Guang Hai Wang ◽  
Liu Shi Tao ◽  
...  

In this paper, effect of moisture absorption on high temperature thermal insulation performance of fiber insulation material is studied. Fiber material is stored in 40°C through a long period of time, then spontaneous moisture absorption of fiber material is measured. According this test result, 20% and 40% moisture absorption content gradient are determined. Pore distribution and high temperature thermal insulation property of samples of 20% and 40% moisture absorption and the dry samples are all tested in this study. The internal pore size distribution of fiber insulation material after moisture absorbing has a certain coarsening. Fiber material after moisture absorbing will make its pore size become large. And oxygen acetylene test results showed that: the larger moisture absorption, the more slowly the initial temperature rises. Fiber material after moisture absorbing will make its low temperature thermal insulation performance reduce, but it has little impact of its high temperature thermal insulation performance.


2021 ◽  
Vol 8 ◽  
Author(s):  
Satoshi Yoda ◽  
Satoru Takeshita ◽  
Takumi Ono ◽  
Ryosuke Tada ◽  
Hideo Ota

A new flexible thermal insulation sheet, a composite of silica aerogel with polypropylene (PP) foam, has been developed. Even though a large volume ratio of silica aerogel (97%) was included, the composite showed high flexibility. Thermal conductivity of the composite was 0.016 W/(m⋅K) at 298 K, which is as low as silica aerogel monolith. Silica aerogel flaking, which has been a problem in practical applications, is very low in this composite due to skin layers of the polymer-foam composite. A supercritical drying process for rolled sheets of the material for large-scale production is also described. Simulations of extraction of 2-propanol from a silica alcogel revealed that rolled composite sheets with small spaces between the sheet composite are able to dry in a reasonable extraction time. These findings led to effective on production of this material on a pilot industrial scale.


2011 ◽  
Vol 239-242 ◽  
pp. 1771-1774 ◽  
Author(s):  
Meng Qiu Jia ◽  
Yu Hong Jin

Reflective topcoat and thermal insulation mid-coat composite coatings system was used in this work. The effect of the content of the hollow glass micro-beads and rutile titanium dioxide on the heat insulation performance and the reflectivity of the coatings were investigated, respectively. The heat insulation performance and the reflectivity of the thermal insulation reflective composite coatings (TIRCCs) were characterized by self-prepared experimental device. The results showed the good heat insulation property, and the insulated temperature reached 12-15°C, and the reflectivity was up to 95%. The anti-corrosion and anti-penetration of the TIRCCs were studied by electrochemical impedance spectroscopy (EIS) technique. The results showed that the resistance of the TIRCCs still be maintained at 108Ω·cm2 after 30 days in the 3.5% aqueous solution of sodium chloride. So The TIRCCs can be used on the surface of the steal structure for decreasing the temperature and enhancing anti-corrosion properties.


2011 ◽  
Vol 261-263 ◽  
pp. 783-787 ◽  
Author(s):  
Soon Ching Ng ◽  
Kaw Sai Low ◽  
Ngee Heng Tioh

Roof and wall are known to be responsible for heat entering into a building and should therefore be thermally insulated in order to lessen energy consumption required for air-conditioning. In this study, four soil-based aerated lightweight concrete (ALC) panels each measures 750 mm (length) x 750 mm (breadth) x 70 mm (thick) with different aerial intensity of newspaper membrane encased were produced and tested on their thermal insulation property. For environmental friendly and economy reasons, clayey soil was used in place of sand to produce the ALC panels and they were tested in the Thermal Laboratory for twenty hours. Temperature gradient was computed based on the surface temperature measured during the test. The results obtained indicated that newspaper membrane encased soil-based ALC panels have superior heat insulation performance compared to control panel in terms of temperature gradient. It is found that the temperature gradient increased from 1.92 °C/cm to 2.08 °C/cm or 8.3% higher than control panel with just merely 0.05 g/cm2 of newspaper membrane encased.


Sign in / Sign up

Export Citation Format

Share Document