Additively Manufactured Compliant Hybrid Gas Thrust Bearing for SCO2 Turbomachinery: Design and Proof of Concept Testing

Author(s):  
Bugra Ertas

Abstract The following paper presents a new type of gas lubricated thrust bearing fabricated using additive manufacturing or direct metal laser melting (DMLM). The motivation for the new bearing concept is derived from the need for highly efficient supercritical carbon dioxide turbomachinery in the mega-watt power range. The paper provides a review of existing gas thrust bearing technologies, outlines the need for the new DMLM concept, and discusses proof of concept testing results. The new concept combines hydrostatic pressurization with individual flexibly mounted pads using hermetic squeeze film dampers in the bearing-pad support. Proof-of-concept testing in air for a 6.8" (173mm) outer diameter thrust bearing was performed; with loads up to 1,500 lbs (6.67kN) and a rotating speed of 10krpm (91 m/s tip speed). The experiments were performed with a bent shaft resulting in thrust runner axial vibration magnitudes of 2.9mils (74microns) p-p and dynamic thrust loads of 270 lbs (1.2kN) p-p. In addition, force deflection characteristics of the bearing system are presented for an inlet hydrostatic pressure of 380psi (2.62MPa). Results at 10krpm show that the pad support architecture was able to sustain high levels of dynamic misalignment equaling 6 times the nominal film clearance while demonstrating a unit load carrying capacity of 55psi (0.34Mpa). Gas-film force-deflection tests portrayed nonlinear behavior like a hardening spring, while the pad support stiffness was measured to be linear and independent of film thickness.

Author(s):  
Bugra Ertas

Abstract The following paper presents a new type of gas lubricated thrust bearing that utilizes additive manufacturing or also known as direct metal laser melting (DMLM) to fabricate the bearing. The motivation for the new bearing concept is derived from the need for highly efficient supercritical carbon dioxide (sCO2) turbomachinery in the mega-watt power range. The paper provides a review of existing gas thrust bearing technology, outlines the need for the new DMLM concept, and discusses proof of concept testing results. The new concept combines hydrostatic pressurization with individual tilting pads that are flexibly mounted using hermetic squeeze film dampers (HSFD) in the bearing-pad support. This paper describes the thrust bearing concept and discusses the final design approach. Proof-of-concept testing in air for a 6.8” (173mm) outer diameter thrust gas bearing was performed; with thrust loading, up to 1,500 lbs (6.67kN) and a thrust runner speed of 10krpm (91 m/s tip speed). The experiments were performed with a bent shaft resulting in thrust runner axial vibration magnitudes of 2.9mils (74microns) p-p and dynamic thrust loads of 270 lbs (1.2kN) p-p. In addition, force deflection characteristics and stiffness coefficients of the bearing system are presented for an inlet hydrostatic pressure of 380psi (2.62MPa). Results at 10krpm show that the pad support architecture was able to sustain high levels of dynamic misalignment equaling 6 times the nominal film clearance while demonstrating a unit load carrying capacity of 55psi (0.34Mpa). Gas-film force deflection tests portrayed nonlinear behavior like a hardening spring, while the bearing pad support stiffness was measured to be linear and independent of gas film thickness.


Author(s):  
Bugra Ertas ◽  
Keith Gary ◽  
Adolfo Delgado

Abstract The following paper presents test results and advances an analytical predictive fluid-structure model for a new type of gas lubricated thrust bearing fabricated using direct metal laser melting (DMLM). The concept in the present study is a compliant hybrid gas thrust bearing using external pressurization to increase load carrying capacity, where the testing in the present study only focused on steady state static performance. The need for the bearing concept comes from enabling highly efficient supercritical carbon dioxide (sCO2) turbomachinery by replacing oil-lubricated bearings with process gas lubrication. Leveraging the process gas for bearing lubrication results in lowered bearing power loss [1], simplified mechanical design, and allows for novel oil-free hermetic drivetrains resulting in an efficient emission-free system [2,3]. The new concept utilizes hydrostatic pressurization on individual tilting pads flexibly mounted with hermetic squeeze film dampers (HSFD). The paper focuses on tests of a 173mm outer diameter gas thrust bearing in air up to 10krpm and hydrostatic inlet pressures to 365psi (2.52MPa). The present work advances a fluid-structure thrust bearing model using an isothermal ideal-gas based Reynolds flow equation coupled to a lumped stiffness element possessing axial and rotational degrees of freedom. The rotating testing demonstrated load capability of 1,816 lbs (8.1KN), which equates to a thrust bearing unit load of 67psi (0.46 MPa). Load capability was shown to increase with increasing hydrostatic inlet pressure while the increase in thrust runner speed revealed a small decrease in load capacity.


Author(s):  
Bugra Ertas ◽  
Keith Gary ◽  
Adolfo Delgado

Abstract The following paper presents rotating test results and advances an analytical predictive fluid-structure model for a new type of gas lubricated thrust bearing fabricated using direct metal laser melting (DMLM). The bearing concept in the present study is a compliant hybrid gas thrust bearing that uses external pressurization to increase load carrying capacity, where the testing campaign in the present study was only focused on steady state static performance. The need for the bearing concept comes from enabling highly efficient supercritical carbon dioxide (sCO2) turbomachinery by replacing oil-lubricated bearings with process gas lubrication. Leveraging the process gas of the turbomachine for bearing lubrication results in lowered bearing power loss [1], simplified mechanical design, and allows for novel oil-free hermetic drivetrains resulting in an efficient emission-free system [2,3]. The new concept utilizes hydrostatic pressurization on individual tilting pads flexibly mounted with hermetic squeeze film dampers (HSFD). The paper focuses on rotating tests of a 173mm outer diameter gas thrust bearing in air up to 10krpm and hydrostatic inlet pressures to 365psi (2.52MPa). The influence of thrust runner speed and bearing inlet pressure on force deflection characteristics and load carrying capability of the gas film were experimentally evaluated. The present work also advances a predictive fluid-structure thrust bearing model using an isothermal ideal-gas based compressible Reynolds flow equation directly coupled to a lumped stiffness element possessing axial and rotational degrees of freedom. The rotating testing demonstrated load capability of 1,816 lbs (8.1KN), which equates to a thrust bearing unit load of 67psi (0.46 MPa). Gas film force-deflection curves reveal a nonlinear relationship between thrust load and film clearance. Comparison of film thickness values with the predictive model show good agreement under high load and inlet pressure, however deviate as load and pressure decrease. Load capability was shown to increase with increasing hydrostatic inlet pressure while the increase in thrust runner speed revealed a small decrease in load capacity.


2014 ◽  
Vol 19 (4) ◽  
pp. 809-822
Author(s):  
A. Walicka ◽  
E. Walicki ◽  
P. Jurczak ◽  
J. Falicki

Abstract In the paper the influence of bearing surfaces roughness on the pressure distribution and load-carrying capacity of a thrust bearing is discussed. The equations of motion of an Ellis pseudo-plastic fluid are used to derive the Reynolds equation. After general considerations on the flow in a bearing clearance and using the Christensen theory of hydrodynamic rough lubrication the modified Reynolds equation is obtained. The analytical solutions of this equation for the cases of a squeeze film bearing and an externally pressurized bearing are presented. As a result one obtains the formulae expressing pressure distribution and load-carrying capacity. A thrust radial bearing is considered as a numerical example.


2020 ◽  
Vol 92 (1) ◽  
pp. 10906
Author(s):  
Jeroen Schoenmaker ◽  
Pâmella Gonçalves Martins ◽  
Guilherme Corsi Miranda da Silva ◽  
Julio Carlos Teixeira

Organic Rankine Cycle (ORC) systems are increasingly gaining relevance in the renewable and sustainable energy scenario. Recently our research group published a manuscript identifying a new type of thermodynamic cycle entitled Buoyancy Organic Rankine Cycle (BORC) [J. Schoenmaker, J.F.Q. Rey, K.R. Pirota, Renew. Energy 36, 999 (2011)]. In this work we present two main contributions. First, we propose a refined thermodynamic model for BORC systems accounting for the specific heat of the working fluid. Considering the refined model, the efficiencies for Pentane and Dichloromethane at temperatures up to 100 °C were estimated to be 17.2%. Second, we show a proof of concept BORC system using a 3 m tall, 0.062 m diameter polycarbonate tube as a column-fluid reservoir. We used water as a column fluid. The thermal stability and uniformity throughout the tube has been carefully simulated and verified experimentally. After the thermal parameters of the water column have been fully characterized, we developed a test body to allow an adequate assessment of the BORC-system's efficiency. We obtained 0.84% efficiency for 43.8 °C working temperature. This corresponds to 35% of the Carnot efficiency calculated for the same temperature difference. Limitations of the model and the apparatus are put into perspective, pointing directions for further developments of BORC systems.


2020 ◽  
Vol 75 (6) ◽  
pp. 533-542
Author(s):  
Poosan Muthu ◽  
Vanacharla Pujitha

AbstractThe influence of concentration of solute particles on squeeze film lubrication between two poroelastic surfaces has been analyzed using a mathematical model. Newtonian viscous fluid is considered as a lubricant whose viscosity varies linearly with concentration of suspended solute particles. Convection-diffusion model is proposed to study the concentration of solute particles and is solved using finite difference method of Crank–Nicolson scheme. An iterative procedure is used to get the solution for concentration, pressure and velocity components in film region. It has been observed that load carrying capacity decreases as the concentration of solute particles in the fluid film decreases. Further, the concentration of suspended solute particles decreases as the permeability of the poroelastic plate increases and these results may be useful in understanding the mechanism of human joint.


Author(s):  
Hanumagowda Bannihalli Naganagowda ◽  
Sreekala Cherkkarathandayan Karappan

The aim of this paper is to presents a theoretical analysis on squeeze-film characteristics of a rough porous circular stepped plate in the vicinity of pressure-dependent viscosity and lubrication by micropolar fluids. A closed-form expression for non-dimensional pressure, load, and squeezing time is derived based on Eringen’s theory, Darcy’s equation, and Christensen’s stochastic approach. Results indicate that the effects of pressure-dependent viscosity, surface roughness, and micropolar fluids play an important role in increasing the load-carrying capacity and squeezing time, whereas the presence of porous media decreases the load-carrying capacity and squeezing time of the rough porous circular stepped plates.


1990 ◽  
Vol 112 (1) ◽  
pp. 17-22 ◽  
Author(s):  
Cz. M. Rodkiewicz ◽  
K. W. Kim ◽  
J. S. Kennedy

An operating tilting-pad thrust bearing generates a fore-region which is responsible for maintaining, at the bearing entrance, a pressure which is higher than the ambient pressure. This entrance pressure, in the presented analysis, is obtained by applying to the fore-region the momentum integral theorem. The solution of the lubricating film region is then obtained by using this modified inlet pressure. This solution yields the pressure distribution, the load carrying capacity, the film ratio and the frictional force for several values of the modified Reynolds number and various pivot positions. The analysis shows that there is a significant influence of the fore-region pressure on the bearing performance and that to properly design efficient tilting-pad bearing this effect should be taken into consideration.


2012 ◽  
Vol 19 (12) ◽  
pp. 1872-1880
Author(s):  
Bing Jia ◽  
Chao Chen ◽  
Chunsheng Zhao

Sign in / Sign up

Export Citation Format

Share Document