Development of LSTM networks for predicting viscoplasticity with effects of deformation, strain rate and temperature history

2021 ◽  
pp. 1-30
Author(s):  
Lahouari Benabou

Abstract In this paper, long short-term memory (LSTM) networks are used in an original way to model the behavior of a viscoplastic material solicited under changing loading conditions. The material behavior is dependent on history effects of plasticity which can be visible during strain rate jumps or temperature changes. Due to their architecture and internal state (memory), the LSTM networks have the ability to remember past data to update their current state, unlike the traditional artificial neural networks (ANNs) which fail to capture history effects. Specific LSTM networks are designed and trained to reproduce the complex behavior of a viscoplastic solder alloy subjected to strain rate jumps, temperature changes or loading-unloading cycles. The training datasets are numerically generated using the constitutive viscoplastic law of Anand which is very popular for describing solder alloys. The Anand model serves also as a reference to evaluate the performances of the LSTM networks on new data. It is demonstrated that this class of networks is remarkably well suited for replicating the history plastic effects under all the tested loading conditions.

Author(s):  
Y. B. Guo ◽  
Q. Wen ◽  
M. F. Horstemeyer

Worked materials in large deformation processes such as forming and machining experience a broad range of strain, strain rate, and temperatures, which in turn affect the flow stress. However, the flow stress also highly depends on many other factors such as strain path, strain rate and temperature history. Only a model that includes all of these pertinent factors is capable of predicting complex stress state in material deformation. In this paper, the commonly used phenomenological plasticity models (Johnson-Cook, Usui, etc.) to characterize material behavior in forming and machining were critically reviewed. Although these models are easy to apply and can describe the general response of material deformation, these models lack the mechanisms to reflect static and dynamic recovery and the effects of load path and strain rate history in large deformation processes. These effects are essential to understand process mechanisms, especially surface integrity of the manufactured products. As such a dislocation-based internal state variable (ISV) plasticity model was used, in which the evolution equations enable the prediction of strain rate history and temperature history effects. These effects can be quite large and cannot be modeled by the equation-of-state models that assume that stress is a unique function of the total strain, strain rate, and temperature, independent of the loading path. The temperature dependence of the hardening and recovery functions results in the prediction of thermal softening during adiabatic temperatures rises, which are common in metal forming and machining. The dynamic mechanical behaviors of three different benchmark work materials, titanium Ti-6Al-4V, AISI 52100 steel (62 HRc), and aluminum 6061-T6, were modeled using the ISV approach. The material constants were obtained by using a nonlinear regression fitting algorithm in which the stress-strain curves from the model were correlated to the experiments at different (extreme) temperatures. Then the capabilities of the determined material constants were examined by comparing the predicted material flow stress with the test data at different temperatures, strains, and strain rate history. The comparison demonstrates that the internal state plasticity model can successfully recover dynamic material behavior at various deformation states including the loading path effect. In addition, thermal softening due to adiabatic deformation was also captured by this approach.


Author(s):  
Navindra Wijeyeratne ◽  
Firat Irmak ◽  
Grant Geiger ◽  
Jun-Young Jeon ◽  
Ali Gordon

Abstract Components in gas turbines, specifically turbine blades are subjected to extreme loading conditions such as high temperatures and stresses over extended periods of time; therefore, predicting material behavior and life expectancy at these loading conditions are extremely important. The development of simulations that accurately predict monotonic response for these materials are highly desirable. Single crystal Ni-base superalloys used in the design of gas turbine blades exhibit anisotropic behavior resulting from texture development and dislocation substructures. A Crystal Visco-plastic (CVP) model has the capability of capturing both phenomena to accurately predict the deformation response of the material. The rate dependent crystal visco-plastic model consists of a flow rule and internal state variables. This model considers the inelastic mechanism of kinematic hardening which is captured using the Back stress. Crystal graphic slip is taken in to account by the incorporation of 12 Octahedral slip systems. An implicit integration structure that uses Newton Raphson iteration scheme is used to solve the desired solutions. The MATLAB model is developed in two parts, including a routine for the CVP constitutive model along with a separate routine which functions as an emulator. The emulator replicates a finite element analysis model and provides the initial calculations needed for the CVP. A significant advantage of the MATLAB model is its capability to optimize the modelling constants to increase accuracy. The CVP model has the capability to display material behavior for monotonic loading for a variety of material orientations and temperatures.


1986 ◽  
Vol 108 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Huseyin Sehitoglu

Material behavior under thermo-mechanical and isothermal loading cases is studied. The influence of constraint on thermo-mechanical deformation behavior is identified using a two-bar structure. Some of the possible microstructural mechanisms that may be operative under thermo-mechanical loading conditions are discussed. Isothermal tests are reported in the temperature range 20 to 600°C. Additional isothermal tests with step increases and decreases in temperature are performed to study the influence of temperature history on material behavior. During these tests, transient material behavior indicated temperature-strain history effects. Constitutive equations that capture essential features of material behavior under isothermal and thermo-mechanical loading cases are examined. Preliminary predictions of cyclic stress-strain loops are compared to experimental response. Further work is needed to incorporate temperature-strain history effects into constitutive equations.


1978 ◽  
Vol 100 (4) ◽  
pp. 388-394 ◽  
Author(s):  
S. R. Bodner ◽  
A. Merzer

Elastic-viscoplastic constitutive equations based on a single internal state variable which is a function of plastic work are used to calculate the response of copper to a six decade change of strain rate over a range of temperatures. Calculations were performed for the conditions of an experimental program on copper by Senseny, Duffy, and Hawley, namely, temperatures ranging from 77°K to 523°K and strain rate jumps from 2 × 10−4sec−1 to 3 × 102sec−1 at three strain levels. The computed results are in good agreement with the experiments and show similar strain rate and strain rate history effects. Relations are obtained for the temperature dependence of certain parameters in the equations which indicate correspondence between plastic working and temperature and between strain rate sensitivity and temperature.


2018 ◽  
Vol 941 ◽  
pp. 39-45 ◽  
Author(s):  
Janusz Majta ◽  
Remigiusz Bloniarz ◽  
Marcin Kwiecień ◽  
Krzysztof Muszka

This paper presents a summary of a preliminary research aimed at producing ultrafine-grained (UFG) and heterogeneous microstructure in microalloyed steel and testing these materials under dynamic loading conditions (strain rates 800 s-1 and 1800s-1). The UFG and bimodal-structures, due to grain size, structural composition or morphology of structural components, were produced by an advanced thermomechanical processing, namely rolling in: hot, two-phase and cold-hot combined conditions. The advantage of bimodal microstructures is their maximization of mechanical behavior under extreme loading conditions due to promoted accumulation and interactions of geometrically necessary dislocations. The dynamic work-hardening behavior has been studied as a function of solute atoms and fine-scale, second-phase particles in the UFG and bimodal-structures. The substantial complexity of the phenomena, which occur through the evolution of microstructure and texture in response to dynamic loading, presents formidable challenges to theoretical model development of plastic deformation of UFG and bimodal-structures. Such an extraordinary work hardening provides an attractive strategy to develop optimal combination of mechanical properties i.e. strength/ductility ratio. A multi-scale analysis capable of including material behavior in different scales should be applied to discuss mechanical response of mentioned above microstructures and to help to analyze their influence on mechanical behavior under dynamic loading. The investigation was performed for a material of common application: high strength microalloyed steel X70. The experimental results show that strain rate sensitivity of the heterogeneous microstructures obtained by various thermomechanical rolling routes are significant, but not by a similar magnitude with the microstructure compositions and increasing strain rate.


2011 ◽  
Vol 121-126 ◽  
pp. 483-487
Author(s):  
Peng Fei Hao ◽  
Xiao Bo Hou ◽  
Jia Zhi Gao ◽  
Yong Liu ◽  
Xue Feng Shu

Mechanical properties of Q345 steel used for industrial structure under high strain rate and high temperature loading conditions such as rocket launching are required to provide appropriate safety assessment to these mechanical structures. The split Hopkinson pressure bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of Q345 steel under both high strain rate compressive and high temperature loading are determined using the SHPB technique.


1963 ◽  
Vol 3 (01) ◽  
pp. 1-8 ◽  
Author(s):  
N.T. Burdine

BURDINE, N.T., SOCONY MOBIL OIL CO., INC., DALLAS, TEX Abstract The present investigation is concerned with the cumulative damage to rock samples when exposed to cyclic stresses under various loading conditions. Information on the response of rocks to repetitive deformational forces is an essential prerequisite to an understanding of the fundamentals of drilling. Using a laboratory designed and constructed dynamic-stress apparatus, preliminary data were obtained on cylindrical rock samples. The experiments consist of measuring the number of cycles to failure for a given axial load ( static plus dynamic). Data were obtained for various confining and pore pressures, pore fluids (air and water), frequencies of stress application and loading procedures. The results are related to failure theories and dynamic fatigue properties of other materials. Introduction In most conventional and new drilling processes, repetitive forces are applied to the bottom of the borehole. Furthermore, in hard-rock drilling the number of applications of the forces to a particular section of rock may become excessively large. The present investigation is concerned with the cumulative damage to rocks when exposed to cyclic stresses under various loading conditions. It is believed that the experiments will lead to a better understanding of the mechanical response of rocks to particular deformational forces and to a more efficient drillingprocedure.Thepresent investigation is the initial part of a general study of the behavior of inelastic materials under static and dynamic conditions, including both theoretical and experimental studies. SURVEY OF FAILURE THEORIES OF MATERIALS Few, even phenomenological, theories on rock deformation have been established because the state of knowledge of flow, fracture and strength of rocks is largely empirical. Most of the theories that do exist were originally formulated for other materials. HOOKE'S LAW The state of stress in continuous media is completely determined by the stress tensor and the state of deformation by the strain tensor . In the linear theory of elasticity the generalized Hooke's law is ..........................(1) where the coefficients are the components of the elasticity tensor. For homogeneous and isotropic conditions the number of independent coefficients reduce to two, and Eq. 1 becomes ..................(2) in which and are Lame's constants; is the kronecker delta; and is the dilation. This simplified version of Hooke's law has been used quite extensively in geophysical research where most of the information about the mechanical properties of the earth have been obtained. However, it has only limited application in rock fatigue studies. MATERIAL BEHAVIOR Many solids obey Hooke's law at small stresses, but for higher stresses a hysteretic effect occurs due to temporary or permanent residual deformation of the solid (inelastic deformation). Such deviations in mechanical behavior exist in varying degrees in different classes of materials. Most elastic materials have a microscopic heterogeneity due either to random distribution of anisotropic particles, or due to some preferred particle orientation, or both. Other materials are quite grossly heterogeneous. And the method of formation, particularly in rocks, oftentimes creates residual stress concentrations which have complicated states of imperfect equilibrium. Also, the thermal effects resulting from structural behavior give rise to nonuniform temperature distributions and the degradation of mechanical energy. When such bodies are exposed to certain large loading conditions, the inelastic behavior is intensified so strongly that the deformation, normally brittle, becomes ductile. SPEJ P. 1^


Sign in / Sign up

Export Citation Format

Share Document