Design, Simulation, and Experimental Validation of Thermally Infused Hydraulic Ram Pump

2021 ◽  
pp. 1-20
Author(s):  
Ashenafi Abebe Mebrat ◽  
Yilma Tadesse ◽  
Asfaw Beyene

Abstract Hydraulic ram pump, also known as hydram, lifts water without using external power input. Its low performance combined with affordability of fuels has put this otherwise longstanding technology in the backburner of science and research for a long time, yielding to electric or fuel powered pumps. However, growing concerns about the impacts of fossil fuel use on the environment as well as the rising price of electricity has generated a renewed interest in such technology. The ram pump's operation in remote areas where power grid is not available adds research value on the technology. In this project, a novel approach, i.e., adding thermal energy to the flow to assist the water hammer pressure was modelled. Computational Fluid Dynamics (CFD) simulation was conducted using ANSYS. The results were validated experimentally in a 32 mm (27 mm internal diameter) drive pipe and a supply head of 2.18 m ram pump. The Analytical approach was more conservative. The results between simulation and experiment were fairly consistent, with only 6.99% error for pressure, and 10.16% for flow rate. The results show that pressure increased from 183.33 kPa to 342.32 kPa when thermally assisted to reach 150 °C. The experimental discharge flow increased from 11.72 L/min to 16.41 L/min for the corresponding temperature, a 42.01% increase.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Makoto Gozawa ◽  
Yoshihiro Takamura ◽  
Tomoe Aoki ◽  
Kentaro Iwasaki ◽  
Masaru Inatani

AbstractWe investigated the change in the retinal gas cover rates due to intraocular gas volume and positions using computational eye models and demonstrated the appropriate position after pars plana vitrectomy (PPV) with gas tamponade for rhegmatogenous retinal detachments (RRDs). Computational fluid dynamic (CFD) software was used to calculate the retinal wall wettability of a computational pseudophakic eye models using fluid analysis. The model utilized different gas volumes from 10 to 90%, in increments of 10% to the vitreous cavity in the supine, sitting, lateral, prone with closed eyes, and prone positions. Then, the gas cover rates of the retina were measured in each quadrant. When breaks are limited to the inferior retina anterior to the equator or multiple breaks are observed in two or more quadrants anterior to the equator, supine position maintained 100% gas cover rates in all breaks for the longest duration compared with other positions. When breaks are limited to either superior, nasal, or temporal retina, sitting, lower temporal, and lower nasal position were maintained at 100% gas cover rates for the longest duration, respectively. Our results may contribute to better surgical outcomes of RRDs and a reduction in the duration of the postoperative prone position.


2021 ◽  
Vol 45 (3) ◽  
pp. 422-457
Author(s):  
A. Friedberg ◽  
Juni Hoppe

The almost verbatim parallels of the dietary laws in Lev. 11 and Deut. 14 have baffled scholars for a long time. We reexamine the evidence, offer a novel approach to determining the direction of dependency, and point out the notable similarities the borrowing bears to Second Temple editorial and redactional practices, drawing on recent Qumran scholarship. We conclude that Deut. 14.3–21 may be one of the earliest specimens of Rewritten Scripture.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 799
Author(s):  
Yuanchi Cui ◽  
Xuewen Wang ◽  
Chengpeng Zhang ◽  
Jilai Wang ◽  
Zhenyu Shi

Accurate analysis of the resin filling process into the mold cavity is necessary for the high-precision fabrication of moth-eye nanostructure using the ultraviolet nanoimprint lithography (UV-NIL) technique. In this research, a computational fluid dynamics (CFD) simulation model was proposed to reveal resin filling behavior, in which the effect of boundary slip was considered. By comparison with the experimental results, a good consistency was found, indicating that the simulation model could be used to analyze the resin filling behavior. Based on the proposed model, the effects of process parameters on resin filling behavior were analyzed, including resin viscosity, inlet velocity and resin thickness. It was found that the inlet velocity showed a more significant effect on filling height than the resin viscosity and thickness. Besides, the effects of boundary conditions on resin filling behavior were investigated, and it was found the boundary slip had a significant influence on resin filling behavior, and excellent filling results were obtained with a larger slip velocity on the mold side. This research could provide guidance for a more comprehensive understanding of the resin filling behavior during UV-NIL of subwavelength moth-eye nanostructure.


Author(s):  
S N A Ahmad Termizi ◽  
C Y Khor ◽  
M A M Nawi ◽  
Nurlela Ahmad ◽  
Muhammad Ikman Ishak ◽  
...  

Author(s):  
Jeong Hyo Park ◽  
Bong Ju Kim ◽  
Jung Kwan Seo ◽  
Jae Sung Jeong ◽  
Byung Keun Oh ◽  
...  

The aim of this study was to evaluate the load characteristics of steel and concrete tubular members under jet fire, with the motivation to investigate the jet fire load characteristics in FPSO topsides. This paper is part of Phase II of the joint industry project on explosion and fire engineering of FPSOs (EFEF JIP) [1]. To obtain reliable load values, jet fire tests were carried out in parallel with a numerical study. Computational fluid dynamics (CFD) simulation was used to set up an adiabatic wall boundary condition for the jet fire to model the heat transfer mechanism. A concrete tubular member was tested under the assumption that there is no conduction effect from jet fire. A steel tubular member was tested and considered to transfer heat through conduction, convection, and radiation. The temperature distribution, or heat load, was analyzed at specific locations on each type of member. ANSYS CFX [2] and Kameleon FireEx [3] codes were used to obtain similar fire action in the numerical and experimental methods. The results of this study will provide a useful database to determine design values related to jet fire.


2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


2012 ◽  
Vol 621 ◽  
pp. 196-199
Author(s):  
Shui Ping LI ◽  
Ya Li Yuan ◽  
Lu Gang Shi

Numerical simulation method of the internal flow field of fluid machinery has become an important technology in the study of fluid machinery design. In order to obtain a high-performance cement slurry mixer, computational fluid dynamics (CFD) techniques are used to simulate the flow field in the mixer, and the simulation results are studied. According to the analysis results, the structural parameters of the mixer are modified. The results show the mixer under the revised parameters meet the design requirements well. So CFD analysis method can shorten design period and provide valuable theoretical guidance for the design of fluid machinery.


Sign in / Sign up

Export Citation Format

Share Document