Machine Learning Integration with Combustion Physics to Develop a Composite Predictive Model for Reactivity Controlled Compression Ignition Engine

2021 ◽  
pp. 1-27
Author(s):  
Chinmaya Mishra ◽  
P.M.V. Subbarao

Abstract Phasing of combustion metrics close to the optimum values across operation range is necessary to avail benefits of reactivity controlled compression ignition (RCCI) engines. Parameters like start of combustion occurrence crank angle (θsoc), occurrence of burn rate fraction reaching 50% (θ50), mean effective pressure from indicator diagram (IMEP) etc. are described as combustion metrics. These metrics act as markers for macroscopic state of combustion. Control of these metrics in RCCI engine is relatively complex due to the nature of ignition. As direct combustion control is challenging, alternative methods like combustion physics derived models are a subject of research interest. In this work, a composite predictive model was proposed by integrating trained random forest (RF) machine learning and artificial neural networks (ANN) to combustion physics derived modified Livengood-Wu integral, parametrized double-Wiebe function, autoignition front propagation speed based correlations and residual gas fraction model. The RF machine learning established a correlative relationship between physics based model coefficients and engine operating condition. The ANN developed a similar correlation between residual gas fraction parameters and engine operating condition. The composite model was deployed for the predictions of θsoc, θ50 and IMEP as RCCI engine combustion metrics. Experimental validation showed an error standard deviation (θ68.3,err) of 0.67 °CA, 1.19°CA, 0.223 bar and symmetric mean absolute percentage error of 6.92%, 7.87% and 4.01% for the predictions of θsoc, θ50 and IMEP respectively on cycle to cycle basis. Wide range applicability, lesser experiments for model calibration, low computational costs and utility for control applications were the benefits of the proposed predictive model.

Fuel ◽  
2021 ◽  
Vol 292 ◽  
pp. 120330
Author(s):  
Sohayb Bahrami ◽  
Kamran Poorghasemi ◽  
Hamit Solmaz ◽  
Alper Calam ◽  
Duygu İpci

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4621
Author(s):  
P. A. Harari ◽  
N. R. Banapurmath ◽  
V. S. Yaliwal ◽  
T. M. Yunus Khan ◽  
Irfan Anjum Badruddin ◽  
...  

In the current work, an effort is made to study the influence of injection timing (IT) and injection duration (ID) of manifold injected fuels (MIF) in the reactivity controlled compression ignition (RCCI) engine. Compressed natural gas (CNG) and compressed biogas (CBG) are used as the MIF along with diesel and blends of Thevetia Peruviana methyl ester (TPME) are used as the direct injected fuels (DIF). The ITs of the MIF that were studied includes 45°ATDC, 50°ATDC, and 55°ATDC. Also, present study includes impact of various IDs of the MIF such as 3, 6, and 9 ms on RCCI mode of combustion. The complete experimental work is conducted at 75% of rated power. The results show that among the different ITs studied, the D+CNG mixture exhibits higher brake thermal efficiency (BTE), about 29.32% is observed at 50° ATDC IT, which is about 1.77, 3.58, 5.56, 7.51, and 8.54% higher than D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. The highest BTE, about 30.25%, is found for the D+CNG fuel combination at 6 ms ID, which is about 1.69, 3.48, 5.32%, 7.24, and 9.16% higher as compared with the D+CBG, B20+CNG, B20+CBG, B100+CNG, and B100+CBG fuel combinations. At all ITs and IDs, higher emissions of nitric oxide (NOx) along with lower emissions of smoke, carbon monoxide (CO), and hydrocarbon (HC) are found for D+CNG mixture as related to other fuel mixtures. At all ITs and IDs, D+CNG gives higher In-cylinder pressure (ICP) and heat release rate (HRR) as compared with other fuel combinations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dimitri Boeckaerts ◽  
Michiel Stock ◽  
Bjorn Criel ◽  
Hans Gerstmans ◽  
Bernard De Baets ◽  
...  

AbstractNowadays, bacteriophages are increasingly considered as an alternative treatment for a variety of bacterial infections in cases where classical antibiotics have become ineffective. However, characterizing the host specificity of phages remains a labor- and time-intensive process. In order to alleviate this burden, we have developed a new machine-learning-based pipeline to predict bacteriophage hosts based on annotated receptor-binding protein (RBP) sequence data. We focus on predicting bacterial hosts from the ESKAPE group, Escherichia coli, Salmonella enterica and Clostridium difficile. We compare the performance of our predictive model with that of the widely used Basic Local Alignment Search Tool (BLAST). Our best-performing predictive model reaches Precision-Recall Area Under the Curve (PR-AUC) scores between 73.6 and 93.8% for different levels of sequence similarity in the collected data. Our model reaches a performance comparable to that of BLASTp when sequence similarity in the data is high and starts outperforming BLASTp when sequence similarity drops below 75%. Therefore, our machine learning methods can be especially useful in settings in which sequence similarity to other known sequences is low. Predicting the hosts of novel metagenomic RBP sequences could extend our toolbox to tune the host spectrum of phages or phage tail-like bacteriocins by swapping RBPs.


2021 ◽  
pp. 219256822110193
Author(s):  
Kevin Y. Wang ◽  
Ijezie Ikwuezunma ◽  
Varun Puvanesarajah ◽  
Jacob Babu ◽  
Adam Margalit ◽  
...  

Study Design: Retrospective review. Objective: To use predictive modeling and machine learning to identify patients at risk for venous thromboembolism (VTE) following posterior lumbar fusion (PLF) for degenerative spinal pathology. Methods: Patients undergoing single-level PLF in the inpatient setting were identified in the National Surgical Quality Improvement Program database. Our outcome measure of VTE included all patients who experienced a pulmonary embolism and/or deep venous thrombosis within 30-days of surgery. Two different methodologies were used to identify VTE risk: 1) a novel predictive model derived from multivariable logistic regression of significant risk factors, and 2) a tree-based extreme gradient boosting (XGBoost) algorithm using preoperative variables. The methods were compared against legacy risk-stratification measures: ASA and Charlson Comorbidity Index (CCI) using area-under-the-curve (AUC) statistic. Results: 13, 500 patients who underwent single-level PLF met the study criteria. Of these, 0.95% had a VTE within 30-days of surgery. The 5 clinical variables found to be significant in the multivariable predictive model were: age > 65, obesity grade II or above, coronary artery disease, functional status, and prolonged operative time. The predictive model exhibited an AUC of 0.716, which was significantly higher than the AUCs of ASA and CCI (all, P < 0.001), and comparable to that of the XGBoost algorithm ( P > 0.05). Conclusion: Predictive analytics and machine learning can be leveraged to aid in identification of patients at risk of VTE following PLF. Surgeons and perioperative teams may find these tools useful to augment clinical decision making risk stratification tool.


2020 ◽  
Vol 16 (4) ◽  
pp. 2315-2324 ◽  
Author(s):  
Chathura Wanigasekara ◽  
Ebrahim Oromiehie ◽  
Akshya Swain ◽  
B. Gangadhara Prusty ◽  
Sing Kiong Nguang

Sign in / Sign up

Export Citation Format

Share Document