Analysis of condensation flow pattern and heat transfer of a cryogenic loop heat pipe with different heating powers

Author(s):  
Kaifen Yan ◽  
Nanxi Li ◽  
Yinong Wu ◽  
Rongjian Xie

Abstract The cryogenic fluids' flow performance and condensation characteristics with different heating powers in cryogenic loop heat pipes (CLHPs) have not been studied due to the difficulty of measurement at low temperature. In this study, a test system was designed and fabricated to characterize the condensation flow patterns of a propylene CLHP and its heat transfer performance with different heating powers. The results show that the two-phase region length and flow pattern in the condenser were closely related to the operation mode of the CLHP. The vapor front in the condenser oscillated at the condenser inlet at a low heating power, which resulted in an unstable operation of the CLHP. Moreover, by comparing the condensation heat transfer coefficient (HTC) with the condensation correlations, the Cavallini correlation is recommended for the design of CLHP condenser.

Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2019 ◽  
Vol 20 (5) ◽  
pp. 507 ◽  
Author(s):  
Lijun Deng ◽  
Jian Zhang ◽  
Guannan Hao ◽  
Jing Liu

To study factors affecting the formation and conversion of two-phase flow pattern as well as the heat transfer of piston cooling gallery, a transient visual target test bench was set up to research the oscillatory flow characteristics in the cooling gallery under idle condition of the engine. The computational fluid dynamics (CFD) was employed while dynamic mesh technology, SST k–ω turbulence model and volume of fluid (VOF) two-phase flow model were applied to simulate the flow process of piston cooling gallery so as to predict the distribution pattern of two-phase flow. Simulation results were in good agreement with that experimentally obtained. It was observed that in the reciprocating movement of the piston, the action of two-phase flow oscillation was severe, forming some unstable wave flows and slug flows. Results show that under the same pipe diameter, the increase of fluid viscosity results in the decrease of amplitude and the increase of the liquid slugs number as well as the enhancement on heat transfer effect. In addition, it was revealed that injection pressure has little effect on the two-phase flow pattern. However, when the pressure is reduced, the change of the liquid phase is weakened and the locations of flow pattern transition move towards to the behind, thus the impact on the heat transfer is also faint.


Author(s):  
K. Ng ◽  
C. Y. Ching ◽  
J. S. Cotton

The objectives of this study are (i) to determine the transient phase redistributions of a two-phase flow in a smooth horizontal annular channel by applying high voltage pulses to induce electric fields and (ii) to quantify the resultant changes in the condensation heat transfer. The experiments were performed using refrigerant R-134a flowing in a tube that was cooled on the outside by a counter-current flow of water. The electric fields are established by applying high voltage to a concentric rod electrode inside a grounded tube. The effect of the electrohydrodynamic (EHD) forces on the changes to the initial stratified/stratified wavy flow pattern was visualized using a high speed camera. The EHD effect results in the redistribution of the liquid-vapour phase within the channel and unique flow structures, such as twisted liquid cones and entrained droplets, are observed. These structures only appear during the initial application of EHD and are absent in the steady state flow pattern. Experiments were performed using a 8kV pulse width modulated (PWM) signal with duty cycles ranging from 0–100% to evaluate the heat transfer and pressure drop characteristics of the transient EHD flow patterns. The resultant heat transfer increased with the duty cycle to approximately 2.7-fold at a low mass flux (45–55kg/m2s) and 1.2-fold at a high mass flux (110kg/m2s). The enhancement was higher as the pulse width was increased.


2004 ◽  
Vol 126 (3) ◽  
pp. 288-300 ◽  
Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406×2.032mm2 cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Features unique to two-phase micro-channel flow were identified and employed to validate key assumptions of an annular flow boiling model that was previously developed to predict pressure drop and heat transfer in two-phase micro-channel heat sinks. This earlier model was modified based on new findings from the adiabatic two-phase flow study. The modified model shows good agreement with experimental data for water-cooled heat sinks.


Author(s):  
Daniel Trainer ◽  
Sung Jin Kim

Air injection into a liquid impinging jet has been shown to be a method of improving non-phase change heat transfer rates by up to twice the normal amount. Previous work has shown that there exists an optimal operating point in terms of the volumetric fraction of air injection when the pumping power is held constant because of an optimal two-phase flow pattern. However, previous work focused on heat transfer from the impingement point only, and neglected performance at other points. The present work studies the local heat transfer performance of an air-assisted water jet, at the impingement point and at positions moving radially outward, under constant pumping power conditions. The area-averaged heat transfer is also considered. Heat transfer at the stagnation point is shown to be optimized between β = 0.1∼0.2, where a bubbly flow pattern exists. Nuavg(r/D ≤ 1) is optimized when the flow pattern was plug-flow and off-center peaks in Nur exist. Nuavg(r/D > 1) is optimized when the water is accelerated by the injected air, but splattering is avoided. Flow patterns have no direct effect outside the impingement region.


Author(s):  
Manoj Kumar Moharana ◽  
Rohan M. Nemade ◽  
Sameer Khandekar

Hydrogen fuel from renewable bio-ethanol is a potentially strong contender as an energy carrier. Its distributed production by steam reforming of ethanol on microscale platforms is an efficient upcoming method. Such systems require (a) a pre-heater for liquid to vapor conversion of ethanol water mixtures (b) a gas-phase catalytic reactor. We focus on the fundamental experimental heat transfer studies (pool and flow boiling of ethanol-water mixtures) required for the primary pre-heater boiler design. Flow boiling results (in a 256 μm square channel) clearly show the influence of mixture composition. Heat transfer coefficient remains almost constant in the single-phase region and rapidly increases as the two-phase region starts. On further increasing the wall superheat, heat transfer starts to decrease. At higher applied heat flux, the channel is subjected to axial back conduction from the single-phase vapor region to the two-phase liquid-vapor region, thus raising local wall temperatures. Simultaneously, to gain understanding of phase-change mechanisms in binary mixtures and to generate data for the modeling of flow boiling process, pool-boiling of ethanol-water mixtures has also been initiated. After benchmarking the setup against pure fluids, variation of heat transfer coefficient, bubble growth, contact angles, are compared at different operating conditions. Results show strong degradation in heat transfer in mixtures, which increases with operating temperature.


Author(s):  
Ivan Noville ◽  
Antonio C. Bannwart

The present work is aimed at the experimental measurement of the two-phase heat transfer coefficient in the intermittent horizontal gas-liquid flow pattern, as well as its comparison with some existing correlations. The intermittent flow pattern is very common in oil production flow lines. In order to reach this objective an experimental apparatus was built, consisting of a 5 cm i.d., 6.0 m long pipe test section fed up with several air-water mixtures pre-heated at different inlet temperatures. Heat transfer was accomplished by surrounding the pipe with a cooling water jacket under various inlet flow rates and temperatures, flowing co-currently with the central pipe gas-liquid mixture. The heat transfer coefficient was experimentally determined and compared with four published correlations. Among then, a mechanistic model was selected for further improvement, with very satisfactory results.


Sign in / Sign up

Export Citation Format

Share Document