scholarly journals Establishing the Longitudinal Temperature Distribution for Fully Developed Turbulent Flow in a Gas Turbine Exhaust Duct

1970 ◽  
Author(s):  
P. J. Torpey ◽  
R. M. Welch

The ability to predict the longitudinal temperature distribution along a gas turbine exhaust duct facilitates the selection of the proper duct material and the appropriate paint or other external coating. It also allows accurate determination of thermal expansion over the entire length. A first-order differential equation is derived from a one-dimensional heat flow model for the exhaust system. A digital computer program employing this model is also presented. The computer solution, in addition to eliminating tedious manual computation, extends the analysis capability by accounting for changes in temperature and flow-dependent variables along the duct length. Measured gas and duct wall temperatures for a 1.5-kw gas turbine exhaust system are compared with values predicted by the analysis. Good agreement is noted throughout that portion of the system in which fully developed flow exists.

Author(s):  
Shaorong Zhou ◽  
Zhaohui Du ◽  
Hanping Chen ◽  
Fangyuan Zhong

The flow and thermal fields within the cooling air injection device which is widely used to suppress the infrared (IR) signatures of a marine gas turbine exhaust system were studied numerically and experimentally. A turbulence near-wall model based on the wall function method was adopted. The discretization equations were derived for the control volumes when conjugate heat transfer exists at their interfaces, with the radiation heat flux at the interfaces appearing as an additional source term. The solution method of entrained velocities at the entrance of secondary flow was introduced. The distributions of temperature and static pressure on the diffuser surface, and the temperature of gas at the outlet of the exhaust duct were simulated numerically. The numerical calculated results agreed well with corresponding scale model experimental data. Lastly, the measured IR radiation distributions by scale model experiments at different view angles and various engine power settings, with and without IR signature suppression (IRSS) devices were presented.


Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


1968 ◽  
Vol 90 (3) ◽  
pp. 265-270 ◽  
Author(s):  
C. G. Ringwall ◽  
L. R. Kelley

Circuit concepts and test data for a fluidic system to sense the average temperature in a gas turbine exhaust duct are presented. Phase discrimination techniques are used to sense the average wave velocity in a long tube and to produce an output pressure differential proportional to temperature error.


Procedia CIRP ◽  
2019 ◽  
Vol 83 ◽  
pp. 630-635 ◽  
Author(s):  
Fei Zhao ◽  
Liang Chen ◽  
Tangbin Xia ◽  
Zikun Ye ◽  
Yu Zheng

Author(s):  
Fangyuan Zhong ◽  
Yu Dai

On the basis of scale model tests in two different dimensions of marine gas turbine exhaust system with infrared signature suppression device, and in the light of similarity analysis and simplified numerical calculation, this paper discusses the effects of scale factor on the flow (flow resistance), temperature (of air-flow and tube wall), and infrared radiant (of exhaust plumes and exhaust uptake inner wall) fields of the exhaust system, and accordingly estimates the corresponding parameters of real ship exhaust systems as well as presents the magnitude of scale factor impacts and the recommended values for selecting the scale factor.


1990 ◽  
Vol 112 (1) ◽  
pp. 80-85
Author(s):  
F. Fleischer ◽  
C. Koerner ◽  
J. Mann

Following repeated cases of damage caused to exhaust silencers located directly beyond gas turbine diffusers, this paper reports on investigations carried out to determine possible remedies. In all instances, an uneven exhaust gas flow distribution was found. The company’s innovative approach to the problem involved constructing a scale model of a complete gas turbine exhaust system and using it for flow simulation purposes. It was established for the first time that, subject to certain conditions, the results of tests conducted on a model can be applied to the actual turbine exhaust system. It is shown that when an unfavorable duct arrangement might produce an uneven exhaust flow, scale models are useful in the development of suitable flow-distributing devices.


2021 ◽  
Author(s):  
Orlando Ugarte ◽  
Suresh Menon ◽  
Wayne Rattigan ◽  
Paul Winstanley ◽  
Priyank Saxena ◽  
...  

Abstract In recent years, there is a growing interest in blending hydrogen with natural gas fuels to produce low carbon electricity. It is important to evaluate the safety of gas turbine packages under these conditions, such as late-light off and flameout scenarios. However, the assessment of the safety risks by performing experiments in full-scale exhaust ducts is a very expensive and, potentially, risky endeavor. Computational simulations using a high fidelity CFD model provide a cost-effective way of assessing the safety risk. In this study, a computational model is implemented to perform three dimensional, compressible and unsteady simulations of reacting flows in a gas turbine exhaust duct. Computational results were validated against data obtained at the simulated conditions in a representative geometry. Due to the enormous size of the geometry, special attention was given to the discretization of the computational domain and the combustion model. Results show that CFD model predicts main features of the pressure rise driven by the combustion process. The peak pressures obtained computationally and experimentally differed in 20%. This difference increased up to 45% by reducing the preheated inflow conditions. The effects of rig geometry and flow conditions on the accuracy of the CFD model are discussed.


Author(s):  
Michal P. Siorek ◽  
Stephen Guillot ◽  
Song Xue ◽  
Wing F. Ng

This paper describes studies completed using a quarter-scaled rig to assess the impact of turbine exit swirl angle and strut stagger on a turbine exhaust system consisting of an integral diffuser-collector. Advanced testing methods were applied to ascertain exhaust performance for a range of inlet conditions aerodynamically matched to flow exiting an industrial gas turbine. Flow visualization techniques along with complementary Computational Fluid Dynamics (CFD) predictions were used to study flow behavior along the diffuser endwalls. Complimentary CFD analysis was also completed with the aim to ascertain the performance prediction capability of modern day analytical tools for design phase and off-design analysis. The K-Epsilon model adequately captured the relevant flow features within both the diffuser and collector, and the model accurately predicted the recovery at design conditions. At off-design conditions, the recovery predictions were found to be pessimistic. The integral diffuser-collector exhaust accommodated a significant amount of inlet swirl without a degradation in performance, so long as the inlet flow direction did not significantly deviate from the strut stagger angle. Strut incidence at the hub was directly correlated with reduction in overall performance, whereas the diffuser-collector performance was not significantly impacted by strut incidence at the shroud.


2018 ◽  
Vol 140 (7) ◽  
Author(s):  
Michal P. Siorek ◽  
Stephen Guillot ◽  
Song Xue ◽  
Wing F. Ng

This paper describes studies completed using a quarter-scaled rig to assess the impact of turbine exit swirl angle and strut stagger on a turbine exhaust system consisting of an integral diffuser-collector. Advanced testing methods were applied to ascertain exhaust performance for a range of inlet conditions aerodynamically matched to flow exiting an industrial gas turbine. Flow visualization techniques along with complementary computational fluid dynamics (CFD) predictions were used to study flow behavior along the diffuser end walls. Complimentary CFD analysis was also completed with the aim to ascertain the performance prediction capability of modern day analytical tools for design phase and off-design analysis. The K-Epsilon model adequately captured the relevant flow features within both the diffuser and collector, and the model accurately predicted the recovery at design conditions. At off-design conditions, the recovery predictions were found to be pessimistic. The integral diffuser-collector exhaust accommodated a significant amount of inlet swirl without degradation in performance, so long as the inlet flow direction did not significantly deviate from the strut stagger angle. Strut incidence at the hub was directly correlated with reduction in overall performance, whereas the diffuser-collector performance was not significantly impacted by strut incidence at the shroud.


Sign in / Sign up

Export Citation Format

Share Document