Experimental Study of Single-Slope Solar Still Coupled With Nanofluid-Based Volumetric Absorption Solar Collector

2021 ◽  
Vol 144 (1) ◽  
Author(s):  
Jagteshwar Singh ◽  
M. K. Mittal ◽  
Vikrant Khullar

Abstract In the present endeavor, a conventional single-slope solar still has been modified to improve its performance by coupling it with a novel nanofluid-based volumetric absorption solar collector (NBVASC). A low-cost and thermally stable nanofluid (prepared by dispersing functionalized carbon soot nanoparticles extracted from used engine oil into paraffin oil) having high solar weighted absorptivity has been employed to volumetrically absorb the incident solar energy. This additional absorbed solar energy is provided to the solar still by circulating a heat transfer fluid in a closed loop through serpentine type heat exchangers placed inside the NBVASC and the solar still. The experiments were performed from May to July 2020, and the results of the experiments conducted on May 25 and June 9, 2020, are reported. Extensive on-sun experiments reveal that coupling NBVASC to the conventional still could lead to substantial performance enhancements—distillate productivity, thermal efficiency, and night distillate improved by 75.3%, 66.9%, and 33.9%, respectively. More importantly, solar still coupled to NBVASC was found to perform better at an optimum nanoparticle concentration of 1.25 mlL−1 (20.75% higher distillate productivity) than the solar still coupled to a surface absorption-based collector (with paraffin oil as the working fluid)—truly establishing the benefits of volumetric absorption over surface absorption under the given set of conditions. Overall, the present study represents a noteworthy step forward in realizing efficient solar energy-driven desalination systems for remote underdeveloped areas.

Author(s):  
Mustafa Aktaş ◽  
Meltem Koşan ◽  
Erhan Arslan ◽  
Azim Doğuş Tuncer

The integrated usage of solar energy systems, heat pump applications, and thermal energy storage units is an effective way for heating systems due to their sustainability and stability in operations. In this study, a novel direct solar-assisted heat pump with thermal energy system has been designed which uses the solar collector as the evaporator of the heat pump. Besides, two-dimensional transient numeric analyses have been conducted for the thermal energy storage unit using the ANSYS Fluent 16.2 commercial software package. With this direct system, the heat required for heating systems is supplied from the condenser with the heat received from the solar collector of the working fluid. For an effective and high performance system, the solar collector is designed as a double-pass which provided superheating of the working fluid. It is aimed to store the surplus energy from the solar energy in the thermal energy storage unit and to operate the system continuously and efficiently in both sunny and overcast weather conditions. Furthermore, the system has been analyzed theoretically and the results show that coefficient of performance may improve. As a result, this newly designed system can be successfully applied for thermal applications.


2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 471-482 ◽  
Author(s):  
Velimir Stefanovic ◽  
Sasa Pavlovic ◽  
Marko Ilic ◽  
Nenad Apostolovic ◽  
Dragan Kustrimovic

Solar energy may be practically utilized directly through transformation into heat, electrical or chemical energy. A physical and mathematical model is presented, as well as a numerical procedure for predicting thermal performances of the P2CC solar concentrator. The demonstrated prototype has the reception angle of 110? at concentration ratio CR = 1.38, with the significant reception of diffuse radiation. The solar collector P2CC is designed for the area of middle temperature conversion of solar radiation into heat. The working fluid is water with laminar flow through a copper pipe surrounded by an evacuated glass layer. Based on the physical model, a mathematical model is introduced, which consists of energy balance equations for four collector components. In this paper, water temperatures in flow directions are numerically predicted, as well as temperatures of relevant P2CC collector components for various values of input temperatures and mass flow rates of the working fluid, and also for various values of direct sunlight radiation and for different collector lengths. The device which is used to transform solar energy to heat is referred to as solar collector. This paper gives numerical estimated changes of temperature in the direction of fluid flow for different flow rates, different solar radiation intensity and different inlet fluid temperatures. The increase in fluid flow reduces output temperature, while the increase in solar radiation intensity and inlet water temperature increases output temperature of water. Furthermore, the dependence on fluid output temperature is determined, along with the current efficiency by the number of nodes in the numerical calculation.


Author(s):  
Luqman Ahmed Pirzada ◽  
Xiaoli Wu . ◽  
Qaiser Ali ◽  
Asif Khateeb .

Solar energy is radiant light as a form of thermal heat energy which can be obtained and used by means of a variety of solar apparatus. As apparatus the flat and curved plate solar collector is specifically designed for assembling solar energy as a solar water heater system. The designing potency of this collector lone can generate medium level hot water from radiant sunlight source via absorbed plates. Standard type flat and curved plates solar collector plates are mostly used in remote coldest regions of the world where hot water is consumed for commercial and domestic purposes. These types of solar collector Plates can cheaply be manufactured compared to other solar panels like solar Shingles, Polycrystalline Solar Panels, Mono-crystalline Solar Panels, and Thin Film Solar Panels. For future work, this proposed pre-design is recommended for fabrication. A numerical study was carried-out on eight city locations in China by tracing their horizontal and vertical longitudinal, latitudinal lines noting the date, time and sunlight feeding of temperatures in the Celsius scale with the help of simulation and modeling tools like CFD, ANSYS FLUENT software, mesh geometry tools, and by using the Navier-Stokes and Continuity equations by fluid flow discharge rate, mass flow, water temperature and dropping of temperature, radiation working mechanisms, dimensions of water flowing tubes and absorber plates, density, the velocity of water as the working fluid, the viscosity of water in a cold and hot state as a process of Pre-design. Work also focuses on the comparison between flat plate collector and curved plate collector radiant sunlight absorption, As end result it is found the Curved plate collector produces 22% more elevated heat of outgoing water than flat plate collector.


Author(s):  
Kwamegni Seunou Kreis Vermeil ◽  
Tetang Fokone Abraham ◽  
Edoun Marcel ◽  
Kuitche Alexis ◽  
Ghiaus Adrian- Gabriel

The present work was focused on the experimental investigation of a double air pass solar collector which was designed and constructed at the Laboratory of Energetic and Thermal Applied of the National School of Agro-Industrial Sciences of the University of Ngaoundere. It consists of a double glazed cover with a surface of 0.47 m², an absorbent plate and a layer of thermal insulation. It allows simultaneous circulation and the same flow direction of the working fluid (air) on both side of the absorber. The experimental tests were conducted outdoor, in natural environment of Ngaoundéré city, during one month period, from 4 to 30 of April, between 9:00 am and 5:00 pm, local time. The research aim was to characterize, on one hand, the local weather conditions (solar radiation, ambient temperature, relative humidity and wind velocity), and on the other hand the collector performance. The solar collector was permanently oriented towards the South and tilted by 45° with respect to the horizontal plane. The analysis of the temperature profiles of different components  of the collector showed that the maximum temperature was reached at 2:30 pm, when solar radiation was 1217 W/m² and they were 73.9°C, 61.7°C and 44.7°C for absorber, inner glass  and outer glass, respectively. As concerning the outlet temperature of the heat transfer fluid, the analysis of the results shows that it goes up to 58.4°C and 52.2°C, while thermal efficiency was as high as 47.81% and 65.57% when the air flow velocities were setup at 0.5 m/s and 1.5 m/s, respectively.


Author(s):  
Jon T. Van Lew ◽  
Peiwen Li ◽  
Cho Lik Chan ◽  
Wafaa Karaki ◽  
Jake Stephens

Parabolic trough power systems utilizing concentrated solar energy have proven their worth as a means for generating electricity. However, one major aspect preventing the technologies widespread acceptance is the deliverability of energy beyond a narrow window during peak hours of the sun. Thermal storage is a viable option to enhance the dispatchability of the solar energy and an economically feasible option is a thermocline storage system with a low-cost filler material. Utilization of thermocline storage facilities have been studied in the past and this paper hopes to expand upon that knowledge. The current study aimed to effectively model the heat transfer of a working fluid interacting with filler material. An effective numerical method and efficient computation schemes were developed and verified. A thermocline storage system was modeled under specific conditions and results of great significance to heat storage design and operation were obtained.


Solar Energy ◽  
2020 ◽  
Vol 207 ◽  
pp. 10-21 ◽  
Author(s):  
Rasoul Fallahzadeh ◽  
Latif Aref ◽  
Nabiollah Gholamiarjenaki ◽  
Zeinab Nonejad ◽  
Mohammadreza Saghi

2013 ◽  
Author(s):  
Mohammad Abutayeh ◽  
Mohammad Humood ◽  
Ammar Abdulkarim Alsheghri ◽  
Abdullah Jamal Al Hammadi ◽  
Abdul Rahman Farraj

Scarcity of potable water causes a serious problem in arid regions of the world where freshwater is becoming insufficient and expensive. Warm regions in the Middle East and North Africa are considered among the severest water shortage places. The objective of this project is to study the potential of using solar energy to run existing multi-stage flash (MSF) desalination units in the Arabian Gulf. One problem with MSF is the low efficiency of the system because of the bulk energy required for heating. Exploitation of solar energy in thermal desalination processes is a promising technology because of the ubiquitous nature of sun’s energy. Experimental studies were conducted on a single flash desalination unit. The pilot unit demonstrates the use of solar radiation as the thermal energy input. The process starts by preheating seawater through a vacuumed condenser. Seawater, then, flows inside a circulation tank to be indirectly heated by a heat transfer fluid. The heat transfer fluid circulates inside a flat plate solar collector facing south to absorb solar energy. After raising its temperature, seawater goes through an expansion valve and flashes in a vacuumed chamber to form brine and vapor. The vapor transfers to the condenser and condenses to form potable water by losing its latent heat of vaporization to incoming seawater. The flow rate of the working fluid is controlled via a control valve based on a set point temperature reference. The experiments were carried out using different values of the controlling variables to enhance analysis and validate results.


1966 ◽  
Vol 88 (3) ◽  
pp. 221-231 ◽  
Author(s):  
J. I. Yellott

Spectacular successes in space for helioelectric systems using silicon solar batteries and a gradual emergence into economic significance of heliothermal processes on earth are the outstanding achievements which are discussed in this fourth biennial Progress Report. Solar batteries, still far too expensive for any but the most specialized applications here on earth, have become the standard sources of power for satellites and space probes. In Japan, Africa, Australia, Israel, and many of the Mediterranean nations, solar water heaters are now competitive with electric and fuel-burning heaters, while solar stills capable of supplying drinking water for entire towns are now being built on many Greek islands. Some progress is reported for mechanical power systems, but the goal of a simple, low-cost replacement for primitive muscle-powered pumps has not yet been achieved. Because of the importance of the space program to the nation’s economy, this report deals at some length with satellite power problems. Life-support systems based on solar energy will soon be equally important, since algae culture for oxygen recovery and solar still techniques for water regeneration are being studied for use in the lengthy space missions which are now being contemplated.


Author(s):  
Catalina Gonzalez ◽  
Jinny Rhee

The motivation for this study comes from the need for a clean, renewable energy source, which is greater now more than ever to reduce the country’s dependence on fossil fuels. Cogenerating solar systems can provide heat and electricity for many industrial applications such as power generation and absorption refrigeration systems. For example, data centers that run on conventional refrigeration systems are one of the largest electricity consumers in the nation, accounting for 1.2% of the total electricity consumption in 2005. This electricity consumption, almost half of which is used to run the data center’s air conditioning units, translates to $2.7 billion in electricity costs for that year. Using cogenerating solar systems for these types of applications could represent a significant amount of savings in electricity costs. The objective of this paper is to numerically optimize a receiver for a cogenerating photovoltaic and thermal parabolic solar collector that will produce both heat and electricity. The solar cogeneration system studied will convert solar energy into both heat and electricity by using a combination of photovoltaic cells, a parabolic trough thermal collector, and water as the liquid heat exchanger on the photovoltaic cells. The peak electrical efficiency of the multi-junction gallium arsenide Spectrolab photovoltaic cells used in this study is about 32%, with the rest of the solar energy being absorbed as heat. These temperature gains in the cells can lead to a decrease in efficiency. However, in cogenerating systems, water is used as a working fluid to remove heat from the photovoltaic cells, thus aiding in increasing the electrical efficiency of the photovoltaic system as well as increasing the thermal energy gained from the solar thermal collector. The numerical analysis for this project will use Flotherm, a CFD tool used to solve fluid and thermal problems. A single-phase water cooled square duct receiver subjected to non-uniform heating will be analyzed in Flotherm to determine the optimal parameters for the best convection heat transfer between the working fluid and the photovoltaic cells. To enhance the heat transfer between photovoltaic cells and working fluid, the inner surface of the receiver tube receiving the heat flux will be improved by adding fins to increase heat transfer and induce turbulent flow. The initial receiver design will be compared with other receivers to determine the optimal design. Results will be presented parametrically for a range of flow rates and receiver geometry.


Sign in / Sign up

Export Citation Format

Share Document