Nonlinear Vibration Analysis of Turbine Bladed Disks with Mid-Span Dampers

Author(s):  
Erhan Ferhatoglu ◽  
Stefano Zucca ◽  
Daniele Botto ◽  
Jury Auciello ◽  
Lorenzo Arcangeli

Abstract Friction dampers are one of the most common secondary structures utilized to alleviate excessive vibration amplitudes in turbo-machinery applications. In this paper, the dynamic behavior of the turbine bladed disks coupled with one of the special damper designs, the so-called Mid-Span Dampers (MSDs) that is commonly used in steam turbines of Baker Hughes Company, is thoroughly studied. Friction between the blade and the damper is modeled through a large number of contact nodes by using 2D contact elements with a variable normal load. In the solution procedure, the coupled static/dynamic Harmonic Balance approach is utilized for the first time in the assessment of the dissipation capability of MSDs, computationally shown by predicting the forced response levels of the system at different resonances. Moreover, it is demonstrated that the nonlinear dynamic response is non-unique and it may vary considerably even if all the user-controlled inputs are kept identical. This phenomenon is a novel observation for MSDs and it is explained by an uncertainty present in the contact forces. Contact conditions corresponding to multiple responses are also investigated to unveil the different kinematics of the damper under the same nominal conditions.

2005 ◽  
Vol 128 (2) ◽  
pp. 403-410 ◽  
Author(s):  
E. P. Petrov ◽  
D. J. Ewins

An approach is developed to analyze the multiharmonic forced response of large-scale finite element models of bladed disks taking account of the nonlinear forces acting at the contact interfaces of blade roots. Area contact interaction is modeled by area friction contact elements which allow for friction stresses under variable normal load, unilateral contacts, clearances, and interferences. Examples of application of the new approach to the analysis of root damping and forced response levels are given and numerical investigations of effects of contact conditions at root joints and excitation levels are explored for practical bladed disks.


Author(s):  
Jie Hong ◽  
Lulu Chen ◽  
Yanhong Ma ◽  
Xin Yang

Friction at blade-disk joints is an important source of damping that reduces low frequency resonant amplitudes to acceptable levels in blade-disk assemblies. An effective method is proposed to predict nonlinear forced response of bladed disks taking account of the nonlinear force at blade-disk joints in frequency domain, which syncretizes the excellencies of harmonic balance method, dynamic softness method and tracking motion method. Constrained Mode Shapes are introduced to express the relative motion which occurs at the contact interfaces of blade roots. Compared to using free mode shapes, fewer number of constrained mode shapes is required in order to obtain the accurate resonant response of a system with friction dampers when the contact state is fully stick. It is more efficient to predict the nonlinear forced response of bladed disks taking account of the nonlinear force at blade-disk joints. Based on this method, the effect of Boundary Conditions on the resonant frequencies and forced response levels under different engine rotational speeds is investigated. Large error in the prediction of forced response levels under low engine rotational speed by using traditional methods is found. The effects of preload distribution at blade roots and excitation level are also investigated.


Author(s):  
Christian M. Firrone ◽  
Marco Allara ◽  
Muzio M. Gola

Dry friction damping produced by sliding surfaces is commonly used to reduce vibration amplitude of blade arrays in turbo-machinery. The dynamic behavior of turbine components is significantly affected by the forces acting at their contact interfaces. In order to perform accurate dynamic analysis of these components, contact models must be included in the numerical solvers. This paper presents a novel approach to compute the contact stiffness of cylindrical contacts, analytical and based on the continuous contact mechanics. This is done in order to overcome the known difficulties in simultaneously adjusting the values of both tangential and normal contact stiffness experimentally. Monotonic loading curves and hysteresis cycles of contact forces vs. relative displacement are evaluated as a function of the main contact parameters (i.e. the contact geometry, the material properties and the contact normal load). The new contact model is compared with other contact models already presented in literature in order to show advantages and limitations. The contact model is integrated in a numerical solver, based on the Harmonic Balance Method (HBM), for the calculation of the forced response of turbine components with friction contacts, in particular underplatform dampers. Results from the nonlinear numerical simulations are compared with those from validation experiments.


Author(s):  
E. P. Petrov

An effective method for direct parametric analysis of periodic nonlinear forced response of bladed discs with friction contact interfaces has been developed. The method allows, for the first time, forced response levels to be calculated directly as a function of contact interface parameters such as the friction coefficient, contact surface stiffness (normal and tangential coefficients), clearances, interferences, and the normal stresses at the contact interfaces. The method is based on exact expressions for sensitivities of the multiharmonic interaction forces with respect to variation of all parameters of the friction contact interfaces. These novel expressions are derived in the paper for a friction contact model, accounting for the normal load variation and the possibility of separation-contact transitions. Numerical analysis of effects of the contact parameters on forced response levels has been performed using large-scale finite element models of a practical bladed turbine disc with underplatform dampers and with shroud contacts.


2004 ◽  
Vol 126 (4) ◽  
pp. 654-662 ◽  
Author(s):  
E. P. Petrov

An effective method for direct parametric analysis of periodic nonlinear forced response of bladed disks with friction contact interfaces has been developed. The method allows, forced response levels to be calculated directly as a function of contact interface parameters such as the friction coefficient, contact surface stiffness (normal and tangential coefficients), clearances, interferences, and the normal stresses at the contact interfaces. The method is based on exact expressions for sensitivities of the multiharmonic interaction forces with respect to variation of all parameters of the friction contact interfaces. These novel expressions are derived in the paper for a friction contact model, accounting for the normal load variation and the possibility of separation-contact transitions. Numerical analysis of effects of the contact parameters on forced response levels has been performed using large-scale finite element models of a practical bladed turbine disk with underplatform dampers and with shroud contacts.


Author(s):  
P. Jean ◽  
C. Gibert ◽  
C. Dupont ◽  
J.-P. Lombard

In order to control the risk of high cycle fatigue of bladed disks, it is important to predict precisely the vibration levels and to design damping solutions to attenuate them. Therefore, Snecma has made some efforts in the last years in order to characterize better the damping in aero-engines. Among the various damping sources, friction damping is particularly difficult to model due to its non-linear behaviour [1]. For that purpose, two methods based on multi-harmonic balance strategy have been especially developed for Snecma, dedicated to the study of the non-linear forced response of bladed disks. The first one enables to model the bladed disk equipped with dry-friction dampers [2], and the second one takes into account intrinsic friction located in disk-blade interface [3]. To validate both models experimentally, a test campaign has been carried out in a vacuum chamber on a rotating bladed disk excited by piezoelectric actuators. The blade shanks have been softened in order to increase friction effects. Experimental results show a regular and reproducible behaviour of the non-linear forced response, over various rotation speed and excitation levels. The contributions of friction dampers and friction in blade attachment have been decoupled thanks to glue applied in the blade root. Both friction phenomena that were observed experimentally at resonance of the blade first bending mode have been reproduced numerically. After updating modeling parameters, an acceptable correlation was found on resonance frequencies, amplitudes and damping levels over the full experimental setup range, which validates these numerical tools for their use in design process.


Author(s):  
E. P. Petrov

A generic method for analysis of nonlinear forced response for bladed disks with friction dampers of different designs has been developed. The method uses explicit finite element modeling of dampers, which allows accurate description of flexibility and, for the first time, dynamic properties of dampers of different designs in multiharmonic analysis of bladed disks. Large-scale finite element damper and bladed disk models containing 104−106 degrees of freedom can be used. These models, together with detailed description of contact interactions over contact interface areas, allow for any level of refinement required for modeling of elastic damper bodies and for modeling of friction contact interactions. Numerical studies of realistic bladed disks have been performed with three different types of underplatform dampers: (i) a “cottage-roof” (also called “wedge”) damper, (ii) seal wire damper, and (iii) a strip damper. Effects of contact interface parameters and excitation levels on damping properties of the dampers and forced response are extensively explored.


Author(s):  
Giuseppe Battiato ◽  
Christian M. Firrone ◽  
Teresa M. Berruti ◽  
Bogdan I. Epureanu

Most aircraft turbojet engines consist of multiple stages coupled by means of bolted flange joints which potentially represent source of nonlinearities due to friction phenomena. Methods aimed at predicting the forced response of multistage bladed disks have to take into account such nonlinear behavior and its effect in damping blades vibration. In this paper, a novel reduced order model (ROM) is proposed for studying nonlinear vibration due to contacts in multistage bladed disks. The methodology exploits the shape of the single-stage normal modes at the interstage boundary being mathematically described by spatial Fourier coefficients. Most of the Fourier coefficients represent the dominant kinematics in terms of the well-known nodal diameters (standard harmonics), while the others, which are detectable at the interstage boundary, correspond to new spatial small wavelength phenomena named as extra harmonics. The number of Fourier coefficients describing the displacement field at the interstage boundary only depends on the specific engine order (EO) excitation acting on the multistage system. This reduced set of coefficients allows the reconstruction of the physical relative displacement field at the interface between stages and, under the hypothesis of the single harmonic balance method (SHBM), the evaluation of the contact forces by employing the classic Jenkins contact element. The methodology is here applied to a simple multistage bladed disk and its performance is tested using as a benchmark the Craig–Bampton ROMs of each single stage.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Christian M. Firrone ◽  
Teresa M. Berruti ◽  
Muzio M. Gola

The paper presents an original multiple excitation system based on electromagnets with force control. The system is specifically designed in order to investigate the dynamics of bladed disks, since it mimics the excitation existing in a real engine. Moreover, the system is suitable for forced response tests of bladed disks with nonlinear dynamic response, like in the case of presence of friction contacts, since the amplitude of the exciting force is known with good precision. For this purpose, a device called force-measuring electromagnet (FMEM) was designed and employed during the system calibration. The excitation system is applied to the test rig Octopus, which includes underplatform dampers (UPDs). Tests were carried out under different excitation force amplitude values. The tests put in evidence the presence of mistuning and the UPDs' capability of attenuating the mistuning phenomena.


Author(s):  
Erhan Ferhatoglu ◽  
Stefano Zucca ◽  
Daniele Botto ◽  
Jury Auciello ◽  
Lorenzo Arcangeli

Abstract Friction dampers are one of the most common structures used to alleviate excessive vibration amplitudes in turbomachinery applications. There are very well-known types of contact elements exploited efficiently, such as underplatform dampers. However, different design approach is sometimes needed to maximize the effectiveness further. In this paper, computational forced response prediction of bladed disks with a configuration of the secondary structure commonly used by Baker Hughes design, the so-called mid-span dampers, is presented. Mid-span dampers are metal devices positioned at the middle section of the airfoil span and come into contact with the blade by the centrifugal force acting during rotation. Proposed damping mechanism is applied to a realistic steam turbine bladed disk under cyclic symmetric boundary conditions. Friction contact is modeled through a large number of contact nodes between the blade and the damper by using a 2D friction contact element with variable normal load. Harmonic Balance Method and Alternating Frequency/Time approach are utilized to obtain nonlinear algebraic equations in frequency domain and nonlinear forced response is computed by using Newton-Raphson method. The results obtained by numerical simulations show that mid-span dampers are an efficient configuration type of a damping mechanism to be used in the design of the bladed disks for nonlinear vibration analysis.


Sign in / Sign up

Export Citation Format

Share Document