scholarly journals J Predictions for Defective Pipe Elbows via the Reference Stress Method

Author(s):  
Yuebao Lei ◽  
Peter Budden

Abstract In R6, the J-based failure assessment diagram (FAD) method is used in the fracture assessment, and is underpinned by the reference stress J scheme. Therefore, an assessment using the R6 FAD method is equivalent to a J prediction using the reference stress method. In this paper, the effect of global and local limit load solutions for defective elbows on the reference stress and hence the J predictions is investigated using published three dimensional elastic-plastic finite element (FE) J results, in order to create guidance for users to follow when performing structural integrity assessments of defective elbows using the R6 procedure. The results show that using the global limit load solutions recommended in this paper can lead to good and reasonably conservative J predictions. However, the availability of global limit load solutions is very limited. The results also show that using the local limit load evaluated from the local limit load model recommended in this paper can lead to conservative J predictions for most of the cases considered.

Author(s):  
Liwu Wei ◽  
Isabel Hadley

Fracture assessment diagram (FAD) based fracture assessment procedures are universally adopted by standards/documents including BS7910, R6, API579-1/ASME FFS-1 and FITNET. In the use of a FAD for structural integrity assessment, one important consideration is to determine the load ratio (Lr) which is defined by two equivalent definitions: Lr is either defined as the ratio of reference stress (σref) to yield strength (σY) as in BS7910, or as the ratio of applied load to plastic limit load as in R6. The solutions of reference stress or limit load are given in the assessment procedures for commonly encountered flawed structures such as a plate containing a surface crack and a cylinder containing an external surface crack. Although the solutions given in the various standards are not all the same, they were invariably derived on the basis of analysis of the force and moment equilibrium with regard to a flawed section and none of them has taken into account the effects of bi-axial stressing on a flawed section, thus leading to the likelihood of an overly conservative assessment. In this work, finite element analysis (FEA) of various flawed geometries (plate and cylinder containing surface cracks) was performed to compute plastic limit load, with the focus on understanding the effects of bi-axial stressing on plastic limit load. The geometries assessed include a plate with a surface crack subjected to both uni-axial and bi-axial loading, and a cylinder with circumferentially internal and external surface cracks sustaining a combination of axial loading and internal pressure. The investigation of these cases has demonstrated a significant increase in plastic limit load arising from bi-axial stressing. Comparison of the results of plastic limit load obtained from FEA with those derived from BS 7910 reference stress solutions was carried out to assess the extent of conservatism when the standard solutions are used in the applications containing bi-axial stresses. The implication for structural integrity assessment due to bi-axial stressing was also addressed. A comparison between BS 7910 Level 2B (material-specific FAD) and Level 3C (based on a FAD generated with FEA) procedures was also made and it was shown that whether the Level 3C procedure can reduce the conservatism in an assessment is dependent on individual cases.


2006 ◽  
Vol 129 (3) ◽  
pp. 391-399 ◽  
Author(s):  
R. Adibi-Asl ◽  
R. Seshadri

Cracks and flaws occur in mechanical components and structures, and can lead to catastrophic failures. Therefore, integrity assessment of components with defects is carried out. This paper describes the Elastic Modulus Adjustment Procedures (EMAP) employed herein to determine the limit load of components with cracks or crack-like flaw. On the basis of linear elastic Finite Element Analysis (FEA), by specifying spatial variations in the elastic modulus, numerous sets of statically admissible and kinematically admissible distributions can be generated, to obtain lower and upper bounds limit loads. Due to the expected local plastic collapse, the reference volume concept is applied to identify the kinematically active and dead zones in the component. The Reference Volume Method is shown to yield a more accurate prediction of local limit loads. The limit load values are then compared with results obtained from inelastic FEA. The procedures are applied to a practical component with crack in order to verify their effectiveness in analyzing crack geometries. The analysis is then directed to geometries containing multiple cracks and three-dimensional defect in pressurized components.


Author(s):  
Shinji Yoshida ◽  
Hideo Machida

This paper describes applicability of the 2 parameter assessment method using a reference stress method from the viewpoint of reliability. The applicability of the reference stress method was examined comparing both the GE-EPRI method. As a result, J-integral and limit load at the time of fracture evaluated by the reference stress method is almost equivalent to that by the GE-EPRI method. Furthermore, the partial safety factor (PSF) evaluated by reliability assessment has little difference between two methods, and the required safety factor is enveloped by the safety factor for Service Level-A and B defined in fitness for service (FFS) codes. These results show that of the reference stress method is applicable for J-integral calculation in fracture assessment.


2006 ◽  
Vol 321-323 ◽  
pp. 724-728
Author(s):  
Nam Su Huh ◽  
Yoon Suk Chang ◽  
Young Jin Kim

The present paper provides plastic limit load solutions for axial and circumferential through-wall cracked pipes based on detailed three-dimensional (3-D) finite element (FE) limit analysis using elastic-perfectly plastic behavior. As a loading condition, both single and combined loadings are considered. Being based on detailed 3-D FE limit analysis, the present solutions are believed to be valuable information for structural integrity assessment of cracked pipes.


Author(s):  
Şefika Elvin Eren ◽  
Tyler London ◽  
Yang Yang ◽  
Isabel Hadley

The British Standard, BS 7910 Guide to Methods for Assessing the Acceptability of Flaws in Metallic Structures is currently under revision [1]. Major changes have been undertaken, especially in the fracture assessment routes, and this paper specifically addresses the assessment of proximity to plastic collapse, usually expressed as the parameter Lr via either a reference stress or limit load approach. In the new edition of BS 7910, the reference stress approach has been retained for the assessment of many geometries, mainly for reasons of continuity. However, new limit load solutions (originating in the R6 procedure) are given for use in the assessments of strength mismatched structures or clad plates. In general, a reference stress solution and a limit load solution for the same geometry should deliver the same value of Lr. However, recent comparative studies have shown differences in the assessment of plastic collapse depending on whether the reference stress solutions in BS 7910:2013 or the limit load solutions in R6 are used for the calculation of Lr. In this paper, the extent of the difference in the assessment results with respect to the choice of solutions and boundary conditions are discussed. The results of the assessments in accordance with BS 7910 and R6 are compared with the results of numerical assessments obtained via Finite Element Analysis (FEA). The collapse loads observed in various wide plate tests conducted in the last 20 years are also compared with the collapse loads predicted by BS 910:2013, R6 and FEA. Finally, observations regarding the accuracy of different Codes and FEA are discussed.


2005 ◽  
Vol 297-300 ◽  
pp. 1704-1712
Author(s):  
Ouk Sub Lee ◽  
Hyun Su Kim ◽  
Jong Sung Kim ◽  
Tae Eun Jin ◽  
Hong Deok Kim ◽  
...  

Operating experience of steam generators has shown that cracks of various morphologies frequently occur in the steam generator tubes. These cracked tubes can stay in service if it is proved that the tubes have sufficient safety margin to preclude the risk of burst and leak. Therefore, integrity assessment using exact limit load solutions is very important for safe operation of the steam generators. This paper provides global and local limit load solutions for surface cracks in the steam generator tubes. Such solutions are developed based on three-dimensional (3-D) finite element analyses assuming elastic-perfectly plastic material behavior. For the crack location, both axial and circumferential surface cracks, and for each case, both external and internal cracks are considered. The resulting global and local limit load solutions are given in polynomial forms, and thus can be simply used in practical integrity assessment of the steam generator tubes, because the comparison between experimental data and FE solutions shows good agreement.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 749
Author(s):  
Andrej Likeb ◽  
Nenad Gubeljak

To estimate the acceptable size of cracks and predict the loading limit of the pipeline or its resistance to the initiation and crack growth by following the structural integrity, the fracture toughness and limit load solutions are required. Standard fracture toughness testing of thin-walled pipelines is often difficult to perform in order to complete standard requirements. To find an alternative technique for the measurement of the fracture toughness of the already delivered pipeline segment, the new pipe-ring specimen has been proposed; however, the limit load solutions have not been investigated yet. The limit load depends on the geometry of the specimen and loading mode. The ligament yielding of pipe-ring specimens containing axial cracks through the thickness under combined loads was calculated by the finite element method. This paper provides limit load solutions of several different pipe-ring geometries containing two diametric symmetrical cracks with the same depth ratio in a range of 0.45 ≤ a/W ≤ 0.55. The limit load (LL) solutions calculated by numerical analysis are shown as a function of the full ring section’s size and the corresponding crack aspect ratio for determining the normalized load. These can potentially construct the failure assessment diagram to estimate the crack acceptance in a part of the pipe.


Author(s):  
Yun-Jae Kim ◽  
Kuk-Hee Lee

The present work presents plastic limit load solutions for thin-walled branch junctions under internal pressure and in-plane bending, based on detailed three-dimensional (3-D) FE limit analyses using elastic-perfectly plastic materials. The proposed solutions are valid to ratios of the branch-to-run pipe radius and thickness from 0.0 to 1.0, and the mean radius-to-thickness ratio of the run pipe from 5.0 to 20.0. Comparison with FE results shows good agreement.


Author(s):  
Tae-Song Han ◽  
Nam-Su Huh ◽  
Do-Jun Shim

In order to assess a structural integrity of cracked components made of highly ductile material based on fully plastic fracture mechanics concept, an accurate plastic limit load of components of interest is crucial element. Such a plastic limit load can also be applied to estimate elastic-plastic J-integral based on the reference stress concept. In this context, during last several decades, many efforts have been made to suggest plastic limit load solutions of cracked cylinder. Recent works for evaluating rupture probabilities of nuclear piping indicate that the only use of idealized circumferential through-wall crack leads to very conservative results which in turn gives higher rupture probabilities of nuclear piping, thus the considerations of more realistic crack shape during crack growth due to primary water stress corrosion cracking (PWSCC) and fatigue and axial through-wall crack were recommended to come up with more realistic rupture probabilities of nuclear piping. Then, the needs of fracture mechanics parameters of non-idealized through-wall cracks both in axial and circumferential directions have been raised. In the present work, the plastic limit loads of thick-walled cylinder with non-idealized axial and circumferential through-wall cracks are proposed based on detailed 3-dimensional finite element analyses. The present results can be applied either to assess structural integrity of thick-walled nuclear piping with non-idealized through-wall cracks or to calculate elastic-plastic J-integral using the reference stress concept.


Sign in / Sign up

Export Citation Format

Share Document