Allowable Cracks Related to Penetration for Part-Through Cracks in Pipes Subjected to Bending Stresses

Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Bohumir Strnadel ◽  
Anees Udyawar

Abstract Fully plastic collapse stresses for circumferentially part-through cracked pipes subjected to bending stresses are estimated by Limit Load Criteria provided by the ASME Code Section XI. Allowable crack depths were determined by using the Limit Load Criteria and that are tabulated in the ASME Code Section XI for different plant service level conditions. On the other hand, crack penetration bending stresses for part-through cracked pipes were estimated by using the Local Approach of Limit Load Criteria. By using these Criteria, the study presented in this paper obtained allowable crack depths at penetration for circumferentially part-through cracked pipes. Comparing the allowable crack depths obtained by both methods for each service level, it is evident that the allowable crack depths at penetration calculated by the Local Approach of Limit Load Criteria are almost always smaller than those at fully plastic collapse stresses calculated by the Limit Load Criteria. It was found that the allowable crack depths provided by the ASME Code Section XI are less conservative for crack penetrations.

Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Yun-Jae Kim ◽  
Valery Lacroix ◽  
Bohumir Strnadel

When discrete multiple flaws are in the same plane, and they are close to each other, it can be determined whether they are combined or standalone in accordance with combination rules provided by fitness-for-service (FFS) codes, such as ASME, JSME, BS7910, FKM, WES2805, etc. However, specific criteria of the rules are different amongst these FFS codes. On the other hand, plastic collapse bending stresses for stainless steel pipes with circumferential twin flaws were obtained by experiments and the prediction procedure for collapse stresses for pipes with twin flaws were developed analytically. Using the experimental data and the analytical procedure, plastic collapse stresses for pipes with twin flaws are compared with the stresses in compliance with the combination criteria. It is shown that the calculated plastic collapse stresses based on the combination criteria are significantly different from the experimental and analytical stresses.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Yun-Jae Kim ◽  
Valery Lacroix ◽  
Bohumir Strnadel

When discrete multiple flaws are in the same plane, and they are close to each other, it can be determined whether they are combined or standalone in accordance with combination rules provided by fitness-for-service (FFS) codes. However, specific criteria of the rules are different among these FFS codes. On the other hand, plastic collapse bending stresses for stainless steel pipes with two circumferential similar flaws were obtained by experiments, and the prediction procedure for collapse stresses for pipes with two similar flaws was developed analytically. Using the experimental data and the analytical procedure, plastic collapse stresses for pipes with two similar flaws are compared with the stresses in compliance with the flaw combination criteria. It is shown that the calculated plastic collapse stresses based on the flaw combination criteria are significantly different from the experimental and analytical stresses.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Valery Lacroix ◽  
Vratislav Mares

Abstract Bending stress at plastic collapse for a circumferentially cracked pipe is predicted by limit load criterion provided by the Appendix C of the ASME Code Section XI. The equation of the Appendix C is applicable for pipes with both external and internal surface cracks. On the other hand, the authors have developed a more precise equation taking into account the pipe mean radii at noncracked area and at cracked ligament area. From the comparison of Appendix C equation and the new equation, the plastic collapse stress estimated by the Appendix C equation gives about 20% less conservative bending capacity prediction for external cracked pipes with large crack angle and small Rm/t, where Rm is the pipe mean radius and t is the pipe wall thickness. This paper discusses the limitation scope to use the limit load criterion of the Appendix C equation.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Kunio Hasegawa ◽  
Koichi Saito ◽  
Fuminori Iwamatsu ◽  
Katsumasa Miyazaki

Fully plastic collapse stress for a single circumferential flaw on a pipe is evaluated by the limit load criteria in accordance with the JSME Code S NA-1-2004 and the ASME Code Section XI. However, multiple flaws such as stress corrosion cracking are frequently detected in the same circumferential cross section in a pipe. If the distance between adjacent flaws is short, the two flaws are combined as a single flaw in compliance with combination rules. If the two flaws separated by a large distance, it is not required to combine two flaws. However, there is no evaluation method for two separated flaws in a pipe in the JSME and ASME Codes. Plastic collapse stresses for pipes with two symmetrical circumferential flaws based on net-stress approach had been proposed by one of the authors. Bending tests were performed on Type 304 stainless steel pipes with two symmetrical circumferential flaws. Consequently, it was shown that the proposed method can predict well the plastic collapse stresses for pipes with two flaws. In addition, it is also shown that this method is appropriate to use in fitness-for-service procedures, and higher plastic collapse stresses are expected, compared with current prediction methods for pipes with two flaws.


Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Valery Lacroix ◽  
Vratislav Mares

Abstract Bending stress at plastic collapse for a circumferentially cracked pipe is predicted by limit load equation provided by the Appendix C of the ASME Code Section XI. The equation of the Appendix C is applicable for pipes with both external and internal surface cracks. On the other hand, the authors have developed an equation taking into account the pipe mean radii at non-cracked area and at cracked ligament area. From the comparison of Appendix C equation and the new equation, the plastic collapse stress estimated by the Appendix C equation gives 20 to 30% less conservative bending capacity prediction for external cracked pipes with small Rm/t, where Rm is the pipe mean radius and t is the pipe wall thickness. This paper discusses the limitation of the use of Rm/t for the Appendix C equation.


1999 ◽  
Vol 173 ◽  
pp. 249-254
Author(s):  
A.M. Silva ◽  
R.D. Miró

AbstractWe have developed a model for theH2OandOHevolution in a comet outburst, assuming that together with the gas, a distribution of icy grains is ejected. With an initial mass of icy grains of 108kg released, theH2OandOHproductions are increased up to a factor two, and the growth curves change drastically in the first two days. The model is applied to eruptions detected in theOHradio monitorings and fits well with the slow variations in the flux. On the other hand, several events of short duration appear, consisting of a sudden rise ofOHflux, followed by a sudden decay on the second day. These apparent short bursts are frequently found as precursors of a more durable eruption. We suggest that both of them are part of a unique eruption, and that the sudden decay is due to collisions that de-excite theOHmaser, when it reaches the Cometopause region located at 1.35 × 105kmfrom the nucleus.


Author(s):  
A. V. Crewe

We have become accustomed to differentiating between the scanning microscope and the conventional transmission microscope according to the resolving power which the two instruments offer. The conventional microscope is capable of a point resolution of a few angstroms and line resolutions of periodic objects of about 1Å. On the other hand, the scanning microscope, in its normal form, is not ordinarily capable of a point resolution better than 100Å. Upon examining reasons for the 100Å limitation, it becomes clear that this is based more on tradition than reason, and in particular, it is a condition imposed upon the microscope by adherence to thermal sources of electrons.


Author(s):  
K.H. Westmacott

Life beyond 1MeV – like life after 40 – is not too different unless one takes advantage of past experience and is receptive to new opportunities. At first glance, the returns on performing electron microscopy at voltages greater than 1MeV diminish rather rapidly as the curves which describe the well-known advantages of HVEM often tend towards saturation. However, in a country with a significant HVEM capability, a good case can be made for investing in instruments with a range of maximum accelerating voltages. In this regard, the 1.5MeV KRATOS HVEM being installed in Berkeley will complement the other 650KeV, 1MeV, and 1.2MeV instruments currently operating in the U.S. One other consideration suggests that 1.5MeV is an optimum voltage machine – Its additional advantages may be purchased for not much more than a 1MeV instrument. On the other hand, the 3MeV HVEM's which seem to be operated at 2MeV maximum, are much more expensive.


2005 ◽  
Vol 19 (3) ◽  
pp. 129-132 ◽  
Author(s):  
Reimer Kornmann

Summary: My comment is basically restricted to the situation in which less-able students find themselves and refers only to literature in German. From this point of view I am basically able to confirm Marsh's results. It must, however, be said that with less-able pupils the opposite effect can be found: Levels of self-esteem in these pupils are raised, at least temporarily, by separate instruction, academic performance however drops; combined instruction, on the other hand, leads to improved academic performance, while levels of self-esteem drop. Apparently, the positive self-image of less-able pupils who receive separate instruction does not bring about the potential enhancement of academic performance one might expect from high-ability pupils receiving separate instruction. To resolve the dilemma, it is proposed that individual progress in learning be accentuated, and that comparisons with others be dispensed with. This fosters a self-image that can in equal measure be realistic and optimistic.


Author(s):  
Stefan Krause ◽  
Markus Appel

Abstract. Two experiments examined the influence of stories on recipients’ self-perceptions. Extending prior theory and research, our focus was on assimilation effects (i.e., changes in self-perception in line with a protagonist’s traits) as well as on contrast effects (i.e., changes in self-perception in contrast to a protagonist’s traits). In Experiment 1 ( N = 113), implicit and explicit conscientiousness were assessed after participants read a story about either a diligent or a negligent student. Moderation analyses showed that highly transported participants and participants with lower counterarguing scores assimilate the depicted traits of a story protagonist, as indicated by explicit, self-reported conscientiousness ratings. Participants, who were more critical toward a story (i.e., higher counterarguing) and with a lower degree of transportation, showed contrast effects. In Experiment 2 ( N = 103), we manipulated transportation and counterarguing, but we could not identify an effect on participants’ self-ascribed level of conscientiousness. A mini meta-analysis across both experiments revealed significant positive overall associations between transportation and counterarguing on the one hand and story-consistent self-reported conscientiousness on the other hand.


Sign in / Sign up

Export Citation Format

Share Document