Thermal Energy Storage in Soils at Temperatures Reaching 90°C

2000 ◽  
Vol 122 (1) ◽  
pp. 3-8 ◽  
Author(s):  
A. Gabrielsson ◽  
U. Bergdahl ◽  
L. Moritz

Using soil and groundwater for heat storage offers an opportunity to increase the potential for renewable energy sources. For example, solar heating in combination with high temperature storage, e.g., using ducts in the ground, has the potential of becoming an environment friendly and economically competitive form of heat supply. Technology is developed to reduce ground construction costs and to ensure that adequate attention is paid to the geotechnical potentials and limitations of such systems, in the temperature range between neutral ground temperature up to 90°C. Investigations of real plants and in the laboratory have given valuable knowledge on the thermal effects on clayey soils as well as on the surroundings of high temperature stores in soft clay. The operational function of heat stores, with respect to heat transfer capacity of ground heat exchangers and heat losses, can be predicted with good agreement. For the uppermost part of the temperature range, long term performance, cost verification and thermal endurance of materials involved including the storage medium, is recommended using a full-scale demonstration plant. [S0199-6231(00)00901-1]

2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000207-000214
Author(s):  
Rakesh Kumar

A recent development in the area of high temperature and UV stable polymers, which offers solutions to many existing packaging and reliability challenges of electronics industry, is described. Packaging, protection and reliability of various electronic devices and component, including PCB's, MEMS, optoelectronic devices, fuel cell components and nano-electronic parts are, becoming more challenging due to their long-term performance requirements. This high temperature polymer, named Parylene HT, offers solutions to many existing protective, packaging and reliability issues in the electronics and medical industries, in part because of its excellent electrical and mechanical properties, chemical inertness and long-term thermal stability at high temperature exposure (up to 350°C long-term and short-term at 450 °C). Experimental results and trial runs demonstrate the ability of Parylene HT coating to meet the growing requirements of higher dielectric capabilities, higher temperature integrity, mechanical processing, etc. of a dynamic electronics industry. In addition, Parylene HT polymer coating truly conforms to parts due to its molecular level deposition characteristics. Its suitability and biocompatibility encourage researchers to explore Parylene HT's role in sensors and in active electronic devices for various industries.


Author(s):  
Carl E. Jaske

This paper reviews the metallurgy and behavior of centrifugally cast heat-resistant alloys for ammonia, methanol, and hydrogen reformer furnaces. The alloys include HK and HP, as well as proprietary versions of these materials produced by various foundries. Alloying and metallurgical factors that affect resistance to oxidation, carburization, and high temperature creep are discussed. Examples of the effects of environment and temperature on material behavior are provided. Finally, the use of material properties to predict the long-term performance of reformer furnace components is reviewed.


2018 ◽  
Vol 85 (13) ◽  
pp. 1277-1287 ◽  
Author(s):  
Yueying Fan ◽  
Yun Chen ◽  
Harry Abernathy ◽  
Richard Pineault ◽  
Xueyan Song ◽  
...  

Author(s):  
Wen-Tsuen Wang ◽  
Lou Watkins

This paper addresses a major challenge facing deepwater production of oil and gas: how to assure continuous flow of product under the pressures and temperatures found on the ocean floor. Syntactic foam promises to overcome the limitations exhibited by conventional insulation materials in the past. New hybrid glass and polymer chemistries with improved “hot, wet” performance survive in conditions that were formerly thought impossible. This paper presents the latest laboratory test data on these new materials, and proposes models for predicting long-term performance.


Sign in / Sign up

Export Citation Format

Share Document