Development of a Temporally Modulated Fuel Injector With Controlled Spray Dynamics

Author(s):  
Hyeonsoo Chang ◽  
Chad Sipperley ◽  
David Nelson ◽  
Chris Edwards

It is now well established that combustion instability in liquid-fueled gas turbines can be controlled through the use of active fuel modulation. What is less clear is the mechanism by which this is achieved. This results from the fact that in most fuel modulation strategies not only is the instantaneous mass flow rate of fuel affected but so to are the parameters which define the post-atomization spray that takes part in the combustion. Specifically, experience with piezoelectric modulated sprays has shown that drop size, velocity, cone angle, and patternation are all affected by the modulation process. This inability to decouple changes in the fueling rate from changes in the spray distribution makes understanding of the mechanism of instability control problematic. This paper presents the results of an effort to develop an injector which can provide temporal modulation of the fuel flow rate but without concomitant changes in spray dynamics. This is achieved using an atomization strategy which is insensitive to both fuel flow rate and combustor acoustics (an over-pressured spill-return nozzle) coupled with an actuator with flat frequency response (a low-mass voice coil). The design and development of the actuator (and its control system) are described, and a combination of Phase-Doppler Interferometry and imaging are used to establish its performance. Results show that the system is capable of producing sprays which have little variation in cone angle or spray distribution function despite variations in mass flow rate (number density) of greater than 50% over a range of frequencies of interest for control of combustion instability (10 Hz to 1 kHz).

2002 ◽  
Vol 125 (1) ◽  
pp. 284-291 ◽  
Author(s):  
H. Chang ◽  
D. Nelson ◽  
C. Sipperley ◽  
C. Edwards

It is now well established that combustion instability in liquid-fueled gas turbines can be controlled through the use of active fuel modulation. What is less clear is the mechanism by which this is achieved. This results from the fact that in most fuel modulation strategies not only is the instantaneous mass flow rate of fuel affected but so too are the parameters which define the post-atomization spray that takes part in the combustion. Specifically, experience with piezoelectric modulated sprays has shown that drop size, velocity, cone angle, and patternation are all affected by the modulation process. This inability to decouple changes in the fueling rate from changes in the spray distribution makes understanding of the mechanism of instability control problematic. This paper presents the results of an effort to develop an injector which can provide temporal modulation of the fuel flow rate but without concomitant changes in spray dynamics. This is achieved using an atomization strategy which is insensitive to both fuel flow rate and combustor acoustics (an over-pressured spill-return nozzle) coupled with an actuator with flat frequency response (a low-mass voice coil). The design and development of the actuator (and its control system) are described, and a combination of phase-Doppler interferometry and imaging are used to establish its performance. Results show that the system is capable of producing sprays which have little variation in cone angle or spray distribution function despite variations in mass flow rate (number density) of greater than 50% over a range of frequencies of interest for control of combustion instability (10 Hz to 1 kHz).


Author(s):  
S. F. Goh ◽  
S. Kusadomi ◽  
S. R. Gollahalli

The main purpose of this study was to comprehend the effects of burner diameter and fuel type on smoke point characteristics of a hydrocarbon diffusion flame and its radiation emission. The critical mass flow rate of pure fuel at this smoke point was measured. At nine different fractions of the critical mass flow rate, nitrogen gas was supplied along with the fuel to achieve smoke point. At each condition, flame radiation and flame height were measured. The axial radiation profile at the critical fuel mass flow rate for one burner was also measured. Three fuels of differing sooting propensities were used: ethylene (C2H4), propylene (C3H6), and propane (C3H8). Three different burners with inner diameters of 1.2 mm, 3.2 mm and 6.4 mm were used. Results showed that propylene had the highest critical fuel flow rate and the highest nitrogen dilution required to suppress smoking and total flame radiation, followed by ethylene and propane. For all fuels, the curves of nitrogen flow rate required for smoke suppression versus fuel flow rate exhibited a skewed bell shape. The variation of Reynolds number at the critical fuel mass flow rate with the burner diameter showed a linear relation. On the other hand, the variation of total flame radiation with burner diameter was nonlinear.


Author(s):  
S. F. Goh ◽  
S. Kusadomi ◽  
S. R. Gollahalli

Abstract A study was conducted to understand the effects of dilution and co-flow on the sooting characteristics of hydrocarbon fuels. Measurements of the critical mass flow rate of a fuel at the threshold of smoking and the mass flow rate of the dilution gas (nitrogen) required to suppress smoking at several fuel flow rates were obtained. At the same time, the radiation emission and flame heights were also measured. Also recorded was the axial radiation profile at the critical fuel mass flow rate. Three fuels of differing sooting propensities were used: ethylene (C2H4), propylene (C3H6), and propane (C3H8). A 3.2 mm ID burner was employed. The results showed that propylene had the highest critical fuel flow rate and the highest nitrogen dilution required to suppress smoking, followed by ethylene and propane. Besides, propylene produced the highest flame radiation, followed by ethylene and propane. The variation of nitrogen flow rate required for smoke suppression with fuel flow rate exhibited a skewed bell shape for all fuels. The co-flow had no significant effect on flame soot liberation characteristics.


Author(s):  
Nasser Seraj Mehdizadeh ◽  
Nozar Akbari

Lean premixed combustion is widely used in recent years as a method to achieve the environmental standards with regard to NOx emission. In spite of the mentioned advantage, premixed combustion systems, with equivalence ratios less than one, are susceptible to the combustion instability. To study the lean combustion instability, by experiments, one premixed combustion setup, equipped with reactant supplying system, is designed and manufactured in Amirkabir University of Technology. In this research, gaseous propane is introduced as fuel and several experiments are performed at nearly atmospheric pressure, with equivalence ratios within the range of 0.7 to 1.5. In this experiments fuel mass flow rate is varied between 2 and 4 gr/s. Unstable operating condition has been observed in combustion chamber when equivalence ratio is less than one. To distinguish the combustion instability for various operating conditions, probability density functions, spectral diagrams, and space distribution of pressure oscillations, along with Rayleigh Criterion, are utilized. Accordingly, effect of equivalence ratio on stabilizing the unstable combustion system is investigated. Moreover, convective delay time is calculated for all experiments and the results are compared with Rayleigh Criterion. This comparison has shown good agreement the experimental results and Rayleigh Criterion. Finally, stability limits are identified based on inlet mass flow rate and equivalence ratio.


2020 ◽  
Vol 40 (1) ◽  
pp. 59-66
Author(s):  
Abderrahmane Chachoua ◽  
Mohamed Kamal Hamidou ◽  
Mohammed Hamel

The design for better performance of the spiral housing volute used commonly in radial and mixed inflow gas turbines is of prime importance as it affects the machine stage at both design and off design conditions. The tongue of the scroll divides the flow into two streams, and represents a severe source of disturbances, in terms of thermodynamic parameter uniformity, maximum kinetic energy, the right angle of attack to the rotor and minimum losses. Besides, the volute suffers an undesirable effect due to the recirculating mass flow rate in near bottom vicinity of the tongue. The present project is an attempt to design a tongue fitted with cylindrical holes traversing normal to the stream wise direction, where on account of the large pressure difference between the top and the bottom sides of the tongue will force the recirculating flow to go through the rotor inlet. This possibility with its limitations has not yet been explored. A numerical simulation is performed which might provide our suitable objectives. To achieve this goal the ANSYS code is used to build the geometry, generate the mesh, and to simulate the flow by solving numerically the averaged Navier Stokes equations. Apparently, the numerical results show evidence of favorable impact in using porous tongue. The realization of a contact between the main and recirculation flow by drilled holes on the tongue surface leads to a flow field uniformity, a reduction in the magnitude of the loss coefficient, and a 20 % reduction in the recirculating mass flow rate.


Author(s):  
K. V. L. Narayana Rao ◽  
N. Ravi Kumar ◽  
G. Ramesha ◽  
M. Devathathan

Can type combustors are robust, with ease of design, manufacturing and testing. They are extensively used in industrial gas turbines and aero engines. This paper is mainly based on the work carried out in designing and testing a can type combustion chamber which is operated using JET-A1 fuel. Based on the design requirements, the combustor is designed, fabricated and tested. The experimental results are analysed and compared with the design requirements. The basic dimensions of the combustor, like casing diameter, liner diameter, liner length and liner hole distribution are estimated through a proprietary developed code. An axial flow air swirler with 8 vanes and vane angle of 45 degree is designed to create a re-circulation zone for stabilizing the flame. The Monarch 4.0 GPH fuel nozzle with a cone angle of 80 degree is used. The igniter used is a high energy igniter with ignition energy of 2J and 60 sparks per minute. The combustor is modelled, meshed and analysed using the commercially available ansys-cfx code. The geometry of the combustor is modified iteratively based on the CFD results to meet the design requirements such as pressure loss and pattern factor. The combustor is fabricated using Ni-75 sheet of 1 mm thickness. A small combustor test facility is established. The combustor rig is tested for 50 Hours. The experimental results showed a blow-out phenomenon while the mass flow rate through the combustor is increased beyond a limit. Further through CFD analysis one of the cause for early blow out is identified to be a high mass flow rate through the swirler. The swirler area is partially blocked and many configurations are analysed. The optimum configuration is selected based on the flame position in the primary zone. The change in swirler area is implemented in the test model and further testing is carried out. The experimental results showed that the blow-out limit of the combustor is increased to a good extent. Hence the effect of swirler flow rate on recirculation zone length and flame blow out is also studied and presented. The experimental results showed that the pressure loss and pattern factor are in agreement with the design requirements.


Author(s):  
Yuan Li ◽  
Hao Zhou ◽  
Ning Li ◽  
Kefa Cen

This paper presents a study of ethanol jet spray flame characteristics in a hot-diluted oxidant with different co-flow oxygen concentrations and fuel/air mass flow rate ratios (MF/MA ratios) through advance image processing technique. An air-blast atomizer was located in a McKenna burner which was utilized to provide stable combustion surroundings and variable combustion atmosphere for ethanol jet spray. The co-flow oxygen concentrations were set to 5%, 10%, 15% and 21% (by volume) by adjusting the mass flow rates of CH4, O2 and N2. The MF/MA ratios were set to 0.245, 0.490, 0.735, and 0.980 by adjusting the fuel mass flow rate and the carrier air mass flow rate. A high-speed RGB CCD camera was employed to capture spray flame images continuously. Spray flame edge is detected using an auto-adaptive edge-detection algorithm which could detect the spray flame edge continuously and clearly. A flame zone is defined as the region surrounded by the detected flame edge to obtain flame parameters. Spray flame characteristics are described using the measured flame parameters, involving flame area, length, brightness, nonuniformity and temperature which are derived from the spray flame images. Spray flame area, length, brightness and nonuniformity are extracted through image processing technique directly. Moreover, two-dimensional (2D) temperature profiling of spray flame is obtained by coupling image processing technique with two-color pyrometry based on Planck’s radiation law. The effects of co-flow oxygen concentration and MF/MA ratio on spray flame characteristics are investigated in this work. The spray flame parameters are observed to be sensitive to both co-flow oxygen concentration and MF/MA ratio. The results show that the fuel mass flow rate (MF) has opposite effects on spray flame characteristics compared with the carrier air mass flow rate (MA) in hot-diluted oxidant. Spray flame area and length are shown to decrease for higher co-flow oxygen concentrations, while spray flame brightness, uniformity and temperature are observed to increase for higher co-flow oxygen concentrations, owing to the enhancement of the combustion rate. A higher MF/MA ratio leads to higher spray flame area, length, brightness, uniformity and temperature, due to the increase of the droplet residence time or droplet concentration in hot-diluted oxidant. In the same MF/MA ratio, spray flame area and length are found to be smaller at a higher fuel flow rate (or carrier air flow rate). However, spray flame brightness, uniformity and temperature are demonstrated to be enhanced at a higher fuel flow rate (or carrier air flow rate). (CSPE)


Author(s):  
Mohsen Ghazikhani ◽  
Nima Manshoori ◽  
Davood Tafazoli

An industrial gas turbine has the characteristic that turbine output decreases on hot summer days when electricity demand peaks. For GE-F5 gas turbines of Mashad Power Plant when ambient temperature increases 1° C, compressor outlet temperature increases 1.13° C and turbine exhaust temperature increases 2.5° C. Also air mass flow rate decreases about 0.6 kg/sec when ambient temperature increases 1° C, so it is revealed that variations are more due to decreasing in the efficiency of compressor and less due to reduction in mass flow rate of air as ambient temperature increases in constant power output. The cycle efficiency of these GE-F5 gas turbines reduces 3 percent with increasing 50° C of ambient temperature, also the fuel consumption increases as ambient temperature increases for constant turbine work. These are also because of reducing in the compressor efficiency in high temperature ambient. Steam injection in gas turbines is a way to prevent a loss in performance of gas turbines caused by high ambient temperature and has been used for many years. VODOLEY system is a steam injection system, which is known as a self-sufficient one in steam production. The amount of water vapor in combustion products will become regenerated in a contact condenser and after passing through a heat recovery boiler is injected in the transition piece after combustion chamber. In this paper the influence of steam injection in Mashad Power Plant GE-F5 gas turbine parameters, applying VODOLEY system, is being observed. Results show that in this turbine, the turbine inlet temperature (T3) decreases in a range of 5 percent to 11 percent depending on ambient temperature, so the operating parameters in a gas turbine cycle equipped with VODOLEY system in 40° C of ambient temperature is the same as simple gas turbine cycle in 10° C of ambient temperature. Results show that the thermal efficiency increases up to 10 percent, but Back-Work ratio increases in a range of 15 percent to 30 percent. Also results show that although VODOLEY system has water treatment cost but by using this system the running cost will reduce up to 27 percent.


Author(s):  
Gerald J. Micklow ◽  
Subir Roychoudhury ◽  
H. Lee Nguyen ◽  
Michael C. Cline

A rich burn/quick mix/lean burn (RQL) combustor concept for reducing pollutant emissions is currently under investigation at the NASA Lewis Research Center (LeRC). A numerical study was performed to investigate the chemically reactive flow with liquid spray injection for the RQL combustor. The RQL combustor consists of an airblast atomizer fuel injector, a rich burn section, a converging connecting pipe, a quick mix zone, a diverging connecting pipe and a lean combustion zone. For computational efficiency, the combustor was split into two sub systems, i.e. the fuel nozzle/rich burn section and the quick mix/lean burn section. The current study investigates the effect of varying the mass flow rate split between the swirler passages for an equivalence ratio of 2.0 on fuel distribution, temperature distribution, and emissions for the fuel nozzle/rich burn section of an RQL combustor. The input conditions used in the study were chosen based on tests completed at LeRC. It is seen that optimizing these parameters can substantially improve combustor performance and reduce combustor emissions. The optimal mass flow rate split for reducing NOx emissions based on the numerical study was the same as found by experiment at LeRC.


Author(s):  
Martin Chilla ◽  
Howard Hodson ◽  
David Newman

In core gas turbines relatively cold air is purged through the hub gap between stator and rotor in order to seal the disc space against flow ingestion from the main annulus. Although the sealing mass flow rate is commonly very small compared to the main annulus mass flow rate, it can have significant effects on the development of the passage endwall flows and on the overall loss generation. In this paper, the interaction between annulus and rim sealing flows is investigated using numerical simulations of a generic high-pressure turbine. At first, the numerical approach is validated by comparing the results of calculations to measurement data at the design flow conditions. Following that, results from steady and unsteady calculations are used to describe in detail the aerodynamics in overlap-type rim seals and their effects on the blade passage flow. It is found that the flow interaction at the rim seal interface is strongly influenced by the velocity deficit of the rim sealing flow relative to the annulus flow as well as by the circumferentially non-uniform pressure field imposed by the rotor blades. At typical sealing flow conditions, the flow interaction is found to be naturally unsteady, with periodical vortex shedding into the rotor passage. Finally, the influence of the specific rim seal shape on the flow unsteadiness at the rim seal interface is investigated and the impact on turbine performance is assessed.


Sign in / Sign up

Export Citation Format

Share Document