Experimental Study of Spray Flame Characteristics in Hot-Diluted Oxidant Through Advanced Image Processing Technique

Author(s):  
Yuan Li ◽  
Hao Zhou ◽  
Ning Li ◽  
Kefa Cen

This paper presents a study of ethanol jet spray flame characteristics in a hot-diluted oxidant with different co-flow oxygen concentrations and fuel/air mass flow rate ratios (MF/MA ratios) through advance image processing technique. An air-blast atomizer was located in a McKenna burner which was utilized to provide stable combustion surroundings and variable combustion atmosphere for ethanol jet spray. The co-flow oxygen concentrations were set to 5%, 10%, 15% and 21% (by volume) by adjusting the mass flow rates of CH4, O2 and N2. The MF/MA ratios were set to 0.245, 0.490, 0.735, and 0.980 by adjusting the fuel mass flow rate and the carrier air mass flow rate. A high-speed RGB CCD camera was employed to capture spray flame images continuously. Spray flame edge is detected using an auto-adaptive edge-detection algorithm which could detect the spray flame edge continuously and clearly. A flame zone is defined as the region surrounded by the detected flame edge to obtain flame parameters. Spray flame characteristics are described using the measured flame parameters, involving flame area, length, brightness, nonuniformity and temperature which are derived from the spray flame images. Spray flame area, length, brightness and nonuniformity are extracted through image processing technique directly. Moreover, two-dimensional (2D) temperature profiling of spray flame is obtained by coupling image processing technique with two-color pyrometry based on Planck’s radiation law. The effects of co-flow oxygen concentration and MF/MA ratio on spray flame characteristics are investigated in this work. The spray flame parameters are observed to be sensitive to both co-flow oxygen concentration and MF/MA ratio. The results show that the fuel mass flow rate (MF) has opposite effects on spray flame characteristics compared with the carrier air mass flow rate (MA) in hot-diluted oxidant. Spray flame area and length are shown to decrease for higher co-flow oxygen concentrations, while spray flame brightness, uniformity and temperature are observed to increase for higher co-flow oxygen concentrations, owing to the enhancement of the combustion rate. A higher MF/MA ratio leads to higher spray flame area, length, brightness, uniformity and temperature, due to the increase of the droplet residence time or droplet concentration in hot-diluted oxidant. In the same MF/MA ratio, spray flame area and length are found to be smaller at a higher fuel flow rate (or carrier air flow rate). However, spray flame brightness, uniformity and temperature are demonstrated to be enhanced at a higher fuel flow rate (or carrier air flow rate). (CSPE)

2018 ◽  
Vol 26 (10) ◽  
pp. 1-12
Author(s):  
Arkan Khikhal Husain ◽  
Mahmood Attallah Mashkoor ◽  
Fuad Abdul Ameer Khalaf

This work presents the experimental investigation results of high performance and low emission colorless combustion in a gas turbine tubular combustor at atmospheric conditions. Low emission and colorless oxidation reaction is characterized by dispersed flame and temperature under the conditions of preheated air. System performance, emissions of CO and UHC are recorded up to achieve low emission colorless combustion, the flame capturing, Measurements of temperature, inlet air mass flow rate and gas fuel LPG flow rate for variable of fuel main injector holes diameter. concluded that maximal air mass flow rate, with choked fuel flow in the main injector for each cases promotes the formation of colorless pal blue flame combustion, for 3.2 g/s of fuel flow rate with 6 holes and 1mm main injector holes diameter and lower CO emissions and decreasing in UHC emissions (70 → 10) ppmv with increasing in power generation (0.5 → 3.42) kW and decreasing in S.F.C. (21.5 → 3.49) kg/kwh.


2003 ◽  
Vol 125 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Chang-Yuan Liu ◽  
Ying-Huei Hung

Both experimental and theoretical investigations on the heat transfer and flow friction characteristics of compact cold plates have been performed. From the results, the local and average temperature rises on the cold plate surface increase with increasing chip heat flux or decreasing air mass flow rate. Besides, the effect of chip heat flux on the thermal resistance of cold plate is insignificant; while the thermal resistance of cold plate decreases with increasing air mass flow rate. Three empirical correlations of thermal resistance in terms of air mass flow rate with a power of −0.228 are presented. As for average Nusselt number, the effect of chip heat flux on the average Nusselt number is insignificant; while the average Nusselt number of the cold plate increases with increasing Reynolds number. An empirical relationship between Nu¯cp and Re can be correlated. In the flow frictional aspect, the overall pressure drop of the cold plate increases with increasing air mass flow rate; while it is insignificantly affected by chip heat flux. An empirical correlation of the overall pressure drop in terms of air mass flow rate with a power of 1.265 is presented. Finally, both heat transfer performance factor “j” and pumping power factor “f” decrease with increasing Reynolds number in a power of 0.805; while they are independent of chip heat flux. The Colburn analogy can be adequately employed in the study.


2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Hamisu A Dandajeh ◽  
Talib O Ahmadu

This paper presents an experimental investigation on the influence of engine speed on the combustion characteristics of a Gardener compression ignition engine fueled with rapeseed methyl esther (RME). The engine has a maximum power of 14.4 kW and maximum speed of 1500 rpm. The experiment was carried out at speeds of 750 and 1250 rpm under loads of 4, 8, 12, 16 and 18 kg. Variations of cylinder pressure with crank angle degrees and cylinder volume have been examined. It was found that RME demonstrated short ignition delay primarily due to its high cetane number and leaner fuel properties (equivalence ratio (φ) = 0.22 at 4kg). An increase in thermal efficiency but decrease in volumetric efficiency was recorded due to increased brake loads. Variations in fuel mass flow rate, air mass flow rate, exhaust gas temperatures and equivalence ratio with respect to brake mean effective pressure at engine speeds of 750 and 1250 rpm were also demonstrated in this paper. Higher engine speed of 1250 rpm resulted in higher fuel and air mass flow rates, exhaust temperature, brake power and equivalent ratio but lower volumetric efficiency. Keywords— combustion characteristics, engine performance, engine speed, rapeseed methyl Esther


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1105 ◽  
Author(s):  
Carlo Carcasci ◽  
Lapo Cheli ◽  
Pietro Lubello ◽  
Lorenzo Winchler

This paper presents an off-design analysis of a gas turbine Organic Rankine Cycle (ORC) combined cycle. Combustion turbine performances are significantly affected by fluctuations in ambient conditions, leading to relevant variations in the exhaust gases’ mass flow rate and temperature. The effects of the variation of ambient air temperature have been considered in the simulation of the topper cycle and of the condenser in the bottomer one. Analyses have been performed for different working fluids (toluene, benzene and cyclopentane) and control systems have been introduced on critical parameters, such as oil temperature and air mass flow rate at the condenser fan. Results have highlighted similar power outputs for cycles based on benzene and toluene, while differences as high as 34% have been found for cyclopentane. The power output trend with ambient temperature has been found to be influenced by slope discontinuities in gas turbine exhaust mass flow rate and temperature and by the upper limit imposed on the air mass flow rate at the condenser as well, suggesting the importance of a correct sizing of the component in the design phase. Overall, benzene-based cycle power output has been found to vary between 4518 kW and 3346 kW in the ambient air temperature range considered.


2010 ◽  
Vol 202 (1-3) ◽  
pp. 62-70 ◽  
Author(s):  
Cecilia Arakaki ◽  
Ali Ghaderi ◽  
Arild Sæther ◽  
Chandana Ratnayake ◽  
Gisle G. Enstad

Author(s):  
Khaled Yousef ◽  
Ahmed Hegazy ◽  
Abraham Engeda

Abstract This paper presents a Computational Fluid Dynamic (CFD) simulation for dry air/water-liquid and two-phase flow mixing in a vertical inverted U-tube using the mixture multiphase and turbulence models. This study is to investigate the flow behaviors and underlying some physical mechanisms encountered in dry air/water-liquid flow in the inverted U-tube. Water flows through the inverted U-tube while the dry air is entrained using the side-tube installed after the water flow downward. The inverted U-tube is tested at water mass flow rates of 2,4,6 and 8 kg/s, air mass flow rates, 0.000614–0.02292 kg/s, with dry air volume fractions 0.2–0.9. The obtained results are compared with the experimental data for model validation and the present CFD model is able to give an acceptable agreement. Also, the results show that, at water mass flow rate of 2 kg/s, there are vortices and turbulent intensity disturbances are noticed at the inverted U-tube higher part, which refers to an air entrainment occurrence from the side-tube. Theses disturbances starts to be stabilized at air mass flow rate around 0.00736 kg/s and air volume fraction, αa = 0.75. This means, if the air mass flow rate increases above this limit, the air entrainment may be blocked. On the other side, at water mass flow rate of 4 kg/s, there are little noticed disturbances until air mass flow rate of 0.00368 kg/s and αa = 0.43 and thereafter stabilized. After this point for water mass flow rate of 4 kg/s, increasing air mass flow rate may block the water flow and the whole inverted U-tube system possible stop flowing. Therefore, this study is able to estimate the required operational conditions and mass ratios for stable air entrainment process. Beyond these operational conditions, air entrainment may be blocked and the whole system discontinues its normal induced gravitational flow. In addition, this study proves that the inverted U-tube is able to generate a vacuum pressure up to 53.382 kPa based on the present geometrical configuration. This generated low-pressure by the inverted U-tube can be used for engineering applications which are working under vacuum and need continuous evacuating form the dry air and non-condensable gases. Furthermore, these findings motivate the utilizing of inverted U-tube for the air evacuation purposes for less power consuming in power plants.


Author(s):  
S. F. Goh ◽  
S. Kusadomi ◽  
S. R. Gollahalli

The main purpose of this study was to comprehend the effects of burner diameter and fuel type on smoke point characteristics of a hydrocarbon diffusion flame and its radiation emission. The critical mass flow rate of pure fuel at this smoke point was measured. At nine different fractions of the critical mass flow rate, nitrogen gas was supplied along with the fuel to achieve smoke point. At each condition, flame radiation and flame height were measured. The axial radiation profile at the critical fuel mass flow rate for one burner was also measured. Three fuels of differing sooting propensities were used: ethylene (C2H4), propylene (C3H6), and propane (C3H8). Three different burners with inner diameters of 1.2 mm, 3.2 mm and 6.4 mm were used. Results showed that propylene had the highest critical fuel flow rate and the highest nitrogen dilution required to suppress smoking and total flame radiation, followed by ethylene and propane. For all fuels, the curves of nitrogen flow rate required for smoke suppression versus fuel flow rate exhibited a skewed bell shape. The variation of Reynolds number at the critical fuel mass flow rate with the burner diameter showed a linear relation. On the other hand, the variation of total flame radiation with burner diameter was nonlinear.


Author(s):  
Mário Costa ◽  
Bruno Pizziol ◽  
Miguel Panao ◽  
André Silva

The growth of the aviation sector triggered the search for alternative fuels and continued improvements in thecombustion process. This work addresses the technological challenges associated with spray systems and theconcern of mixing biofuels with fossil fuels to produce alternative and more ecological fuels for aviation. This workproposes a new injector design based on sprays produced from the simultaneous impact of multiple jets, using anadditional jet of air to assist the atomization process. The results evidence the ability to control the average dropsize through the air-mass flow rate. Depending on the air-mass flow rate there is a transition between atomizationby hydrodynamic breakup of the liquid sheet formed on the impact point, to an aerodynamic breakup mechanism,as found in the atomization of inclined jets under cross-flow conditions. The aerodynamic shear breakupdeteriorates the atomization performance, but within the same order of magnitude. Finally, our experiments showthat mixing a biofuel with a fossil fuel does not significantly alter the spray characteristics, regarded as a stepfurther in developing alternative and more ecological fuels for aero-engines.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4737


2020 ◽  
Vol 197 ◽  
pp. 06003
Author(s):  
Maria Faruoli ◽  
Annarita Viggiano ◽  
Paolo Caso ◽  
Vinicio Magi

It is well known that spark ignition internal combustion engines for aeronautical applications operate within a specific temperature range to avoid structural damages, detonations and loss of efficiency of the combustion process. An accurate assessment of the cooling system performance is a crucial aspect in order to guarantee broad operating conditions of the engine. In this framework, the use of a Conjugate Heat Transfer method is a proper choice, since it allows to estimate both the heat fluxes between the engine walls and the cooling air and the temperature distribution along the outer wall surfaces of the engine, and to perform parametric analyses by varying the engine operating conditions. In this work, the air-cooling system of a 4-cylinder spark ignition engine, designed by CMD Engine Company for aeronautical applications, is analysed in order to evaluate the amount of the air mass flow rate to guarantee the heat transfer under full load operating conditions. A preliminary validation of the model is performed by comparing the results with available experimental data. A parametric study is also performed to assess the influence of the controlling parameters on the cooling system efficiency. This study is carried out by varying the inlet air mass flow rate from 1.0 kg/s to 1.5 kg/s and the temperature of the inner wall surfaces of the engine combustion chambers from 390 K to 430 K.


Sign in / Sign up

Export Citation Format

Share Document