Experiences With Gas Turbines Burning Non-Refined Fuel Oils and Related Theoretical Investigations

1974 ◽  
Author(s):  
A. J. Frieder ◽  
P. C. Felix ◽  
H. J. Hess

This paper presents experience on large, low firing temperature European gas turbines operating on crude and residual fuels. The most economic fuel can be a distillate, a heavy distillate, a crude oil, and, in some applications, even a residual fuel.

Author(s):  
R. B. Schiefer

Heavy distillate fuel oils are being offered for use in gas turbines at a significant reduction in fuel cost. This paper will summarize the characteristics of some of these fuels, their effect on gas turbine combustion performance, and the problems associated with their use.


1980 ◽  
Author(s):  
T. W. Temple ◽  
F. L. Foltz ◽  
H. R. Jamalallail

The 747-mile East-West Crude Oil Pipeline across Saudi Arabia employs 60 gas turbines for pumping and power generation. Mainline pump drives are three United Technologies Corporation FT4A-9 modular industrial gas turbines at each of 11 pumping stations. Two of the three mainline gas turbines are required for maximum throughput, while the third is an operational spare. High reliability and availability constraints and the remote unmanned station concept underscore the need for a modern maintenance information system. This paper describes an independent multiple-fault diagnostic/prognostic system, employing a patented gas path analysis technique.


1979 ◽  
Vol 101 (1) ◽  
pp. 186-194
Author(s):  
R. Buchheim

Experimental and theoretical investigations on conventional diffusion flame type combustors and on premix/prevaporize combustors were performed. The range of pollutant levels attainable with the various types of combustors is analyzed. The effect of different fuel nozzles, various fuels, and gas turbine thermodynamic cycle data on exhaust emissions is shown. Correlations are developed as far as possible.


Author(s):  
L. B. Sanborn

This paper describes the application of gas turbines to crude-oil production in a Venezuelan underwater reservoir. Decreasing pressure caused a gradual slowing down of the natural flow, and Creole Corporation was faced with the problem of either artificial lifting of the crude or curtailment of operations with several years of ample supply remaining untapped. This challenge was met successfully through repressurization of the wells by gas turbines. The design of these turbine facilities, their operation, and some of the problems involved are described. The author summarizes with a review of the performance of the gas turbines at their various locations.


1978 ◽  
Author(s):  
L. P. Giering

Fuel oils are frequently contaminated with sodium salts. Users of gas turbines are concerned with the level of sodium in fuel because of the deleterious effects to the turbine. Until recently, on-line continuous methods of analysis did not reliably measure the total sodium in a given fuel. A method is described for the continuous analysis of total sodium present in fuel oils regardless of its chemical form. A small amount of surfactant, “Liquid G” is added to the fuel, and the total sodium in the resulltant solution is determined by flame photometry. The method described provides for the continuous and reliable measurement of sodium in fuel.


Author(s):  
Matthieu Vierling ◽  
Michel Moliere ◽  
Paul Glaser ◽  
Richard Denolle ◽  
Sathya Nayani ◽  
...  

Abstract Gas turbines are often the master pieces of the utilities that power Oil and Gas (O&G) installations as they most often operate in off-grid mode and must reliably deliver the electric power and the steam streams required by all the Exploration/Production (EP) or refining processes. In addition to reliability, fuel flexibility is an important score card of gas turbines since they must permanently accommodate the type of fuel which is available on the particular O&G site. For instance, during the operation of an associated gas field, crude oil comes out from the well heads as the gas reserves are declining or depleted. The utility gas turbine must then be capable to successively burn natural gas and crude oil and often to co-fire both fuels. An important feature of crude oils is that their combustion tends to emit significantly more particulate matter (PM) than do distillate oil and natural gas as they contain some heavier hydrocarbon ends. Taking account of the fact that some alternative liquid fuels emit more particulates matter (PM) than distillate oils, GE has investigated a class of soot suppressant additives that have been previously tested on light distillate oil (No 2 DO). As a continuation of this development, these products have been field-tested at an important refining site where several Frame 6B gas turbines have been converted from natural gas to crude oil with some units running in cofiring mode. This field test showed that proper injections of these fuel additives, at quite moderate concentration levels, enable a substantial abatement of the PM emissions and reduction of flue gas opacity. This paper outlines the main outcomes of this field campaign and consolidates the overall results obtained with this smoke suppression technology.


Author(s):  
Adriana Wong-Moreno ◽  
Alicia Sánchez-Villalvazo

Heavy, brittle and very hard deposits built on the first row vanes have caused severe erosion of all the first stage blades of a gas turbine during operation with washed and treated heavy residual fuel oil. The high sulphur (3.5–4.0 wt.%) fuel oil consumed by the turbine is also high in vanadium (280–290 ppm) and asphaltene content. In the present work the results of an investigation on the physical and chemical characteristics of erosive ash deposits as a function of operation conditions and fuel oil characteristics are presented. The structure and chemistry of deposits were studied by chemical analysis, x-ray diffraction, microanalysis and scanning electron microscopy. It was confirmed that deposit friability is enhanced by its MgSO4 content and that its hardness depends on the amount of MgO present. It was also found a clear correlation between the gas inlet temperature and the size of the ash particles deposited, and on the degree of compactness and hardness of the deposit. The role of the unburned particles, unavoidable in the combustion of heavy fuel oils, is discussed in relation to their influence on the effectiveness of the magnesium inhibitor.


1984 ◽  
Vol 106 (4) ◽  
pp. 812-818 ◽  
Author(s):  
W. J. Bunz ◽  
G. N. Ziady ◽  
H. vonE. Doering ◽  
R. J. Radice

At Qaisumah, Saudi Arabia, there are four GE MS5001P Gas Turbines operated by the Saudi Consolidated Electric Company in the Eastern Province (SCECO East). The Power Plant is not connected to the main SCECO grid and experiences near-capacity peak load demands in the summer months. Its remoteness and proximity to the Trans-Arabian Pipeline (TAPLINE) dictates the burning of Light Saudi Arabian Crude Oil which is desalted by centrifugal purification without the addition of wash water. Eliminating the need for wash water is important because of the scarcity of water at this site. Power loss is controlled and shutdowns minimized during the critical summer months by removing the ash accumulation on the turbine components by on-line nutshell cleaning. This paper describes the first application of this waterless (dry centrifuge) fuel purification system and the impact of various turbine cleaning methods (particularly on-line nutshelling) on turbine performance, availability, and maintenance.


Author(s):  
Raja S. R. Khan ◽  
Maria C. Lagana ◽  
Stephen O. T. Ogaji ◽  
Pericles Pilidis ◽  
Ian Bennett

Procurement of process plant equipment involves decisions based not only on an economic agenda but also on long term plant capability, which in turn depends on equipment reliability. As the greater global community raises environmental concerns and pushes for economic reform, a tool is evermore required for a specific and critical selection of plant equipment. Risk assessments based on NASA’s Technology Readiness Level (TRL) scale have been employed in many previous risk models to map technology in terms of risk and reliability. The authors envisage a scale for quantifying the technical risk. The focus of this paper is the technical risk assessment of gas turbines as mechanical drivers for producing liquefied natural gas (LNG). This risk assessment is a cornerstone of the technoeconomic environmental and risk analysis (TERA) philosophy developed by Cranfield University’s Department of Power and Propulsion in U.K. Monte Carlo simulations are used in order to compare the risks of introducing new plant equipment against existing and established plant equipment. Three scenarios are investigated using an 87MW single spool, typical industrial machine, a baseline engine followed by an engine with increased firing temperature, and finally an engine with a zero staged compressor. The results suggest that if the baseline engine was to be upgraded, then the zero staging option would be a better solution than increasing the firing temperature since zero staging gives the lower rise in total time to repair (TTTR) or downtime. The authors suggest a scaling system based on NASA’s TRL but with modified definition criteria for the separate technology readiness levels in order to better relate the scale to gas turbine technology. The intention is to link the modified TRL to downtime, since downtime has been identified as a quantitative measure of technical risk. Latest developments of the modeling are looking at integrating risk analysis and a maintenance cost and scheduling model to provide a platform for total risk assessment. This, coupled with emissions modeling, is set to provide the overall TERA tool for LNG technology selection.


Author(s):  
Raja S. R. Khan ◽  
Maria Chiara Lagana ◽  
Steven O. T. Ogaji ◽  
Pericles Pilidis ◽  
Ian Bennett

Procurement of process plant equipment involves decisions based not only on an economic agenda but also on long term plant capability, which in turn depends on equipment reliability. As the greater global community raises environmental concerns and pushes for economic reform, a tool is evermore required for specific and critical selection of plant equipment. Risk assessments based on NASA’s Technology Readiness Level (TRL) scale have been employed in many previous risk models to map technology in terms of risk and reliability. The authors envisage a scale for quantifying technical risk. The focus of this paper is the technical risk assessment of gas turbines as mechanical drivers for producing Liquefied Natural Gas (LNG). This risk assessment is a cornerstone of the TERA philosophy, a Technoeconomic and Environmental Risk Analysis developed by Cranfield University’s Department of Power and Propulsion in the UK. Monte Carlo simulations are used in order to compare the risks of introducing new plant equipment against existing and established plant equipment. Three scenarios are investigated using an 87MW single spool, typical industrial machine; a baseline engine followed by an engine with increased firing temperature and finally an engine with a zero staged compressor. The results suggest that if the baseline engine was to be upgraded then the zero staging option would be a better solution than increasing firing temperature since zero staging gives the lower rise in Total Time to Repair (TTTR), or downtime. The authors suggest a scaling system based on NASA’s TRL but with modified definition criteria for the separate technology readiness levels in order to better relate the scale to gas turbine technology. The intention is to link the modified TRL to downtime, since downtime has been identified as a quantitative measure of technical risk. Latest developments of the modelling are looking at integrating risk analysis and a maintenance cost and scheduling model to provide a platform for total risk assessment. This, coupled with emissions modelling, is set to provide the overall TERA tool for LNG technology selection.


Sign in / Sign up

Export Citation Format

Share Document