Analytical Consideration of Fuel Economy and Dynamic Response of a Regenerative High Temperature Automobile Gas Turbine: Part I

1979 ◽  
Author(s):  
T. Itoh ◽  
S. Yamazaki ◽  
T. Takeuchi ◽  
H. Kosuge ◽  
T. Ishida

Ceramic gas turbines are being studied in many countries for future use as automobile engines. Ceramic turbines were also examined here to determine their potential as engines for passenger cars. Initially, it was found that in the Japanese 10-mode driving cycle and at a turbine inlet temperature (TIT) of 1350 C, the turbine fuel economy was not better than current gasoline engines. On the other hand, it was also found that fuel economy is greatly improved if the air flow at idle conditions is reduced to 1/2 by using, for example, variable geometry components. It is pointed out that a simulation technique is available for estimating the dynamic characteristics of regenerative gas turbine engines, including consideration of variable geometry components. However, satisfactory regenerator models were not readily available. Hence, an experimental regenerator model was made. Where compared with test values, comparatively good results were obtained. Part II of this paper will report in the future on how these models were applied to an engine and what results were obtained from the dynamic simulation of the regenerative, high temperature gas turbine.

Author(s):  
Keisuke Makino ◽  
Ken-Ichi Mizuno ◽  
Toru Shimamori

NGK Spark Plug Co., Ltd. has been developing various silicon nitride materials, and the technology for fabricating components for ceramic gas turbines (CGT) using theses materials. We are supplying silicon nitride material components for the project to develop 300 kW class CGT for co-generation in Japan. EC-152 was developed for components that require high strength at high temperature, such as turbine blades and turbine nozzles. In order to adapt the increasing of the turbine inlet temperature (TIT) up to 1,350 °C in accordance with the project goals, we developed two silicon nitride materials with further unproved properties: ST-1 and ST-2. ST-1 has a higher strength than EC-152 and is suitable for first stage turbine blades and power turbine blades. ST-2 has higher oxidation resistance than EC-152 and is suitable for power turbine nozzles. In this paper, we report on the properties of these materials, and present the results of evaluations of these materials when they are actually used for CGT components such as first stage turbine blades and power turbine nozzles.


Author(s):  
J. E. Donald Gauthier

This paper describes the results of modelling the performance of several indirectly fired gas turbine (IFGT) power generation system configurations based on four gas turbine class sizes, namely 5 kW, 50 kW, 5 MW and 100 MW. These class sizes were selected to cover a wide range of installations in residential, commercial, industrial and large utility power generation installations. Because the IFGT configurations modelled consist of a gas turbine engine, one or two recuperators and a furnace; for comparison purpose this study also included simulations of simple cycle and recuperated gas turbine engines. Part-load, synchronous-speed simulations were carried out with generic compressor and turbine maps scaled for each engine design point conditions. The turbine inlet temperature (TIT) was varied from the design specification to a practical value for a metallic high-temperature heat exchanger in an IFGT system. As expected, the results showed that the reduced TIT can have dramatic impact on the power output and thermal efficiency when compared to that in conventional gas turbines. However, the simulations also indicated that several configurations can lead to higher performance, even with the reduced TIT. Although the focus of the study is on evaluation of thermodynamic performance, the implications of varying configurations on cost and durability are also discussed.


Author(s):  
Tetsuo Teramae ◽  
Yutaka Furuse ◽  
Katsuo Wada ◽  
Takashi Machida

To cope with the increasing demand of electric power, many research and development programs have been performed in the field of electric power industry. Among them, the application of highly thermal resistive ceramics to hot parts of the gas turbines is one of the most promising ways to raise the thermal efficiency of the gas turbine, and several projects have been executed in the U.S.A., Europe and Japan. Tokyo Electric Power Co., Inc. (TEPCO) also has been conducting a research project to apply ceramic components to hot parts of a 20MW class gas turbine with a turbine inlet temperature of 1300C. In this project. TEPCO and Hitachi have been conducting the cooperative research work to develop a first stage ceramic rotor blade. After several design modifications, it was decided to select ceramic blades attached directly to a metal rotor disc, and to insert metal pads between the dovetail of the ceramic blade and metal disc to convey the centrifugal force produced by the blade smoothly to the metal disc. The strength of this ceramic blade has been verified by a series of experiments such as tensile tests, room temperature spin tests, thermal loading tests, and high temperature spin tests using a high temperature gas turbine development unit (HTDU). In addition, the reliability of the ceramic blade under design and test conditions has been analyzed by a computer program GFICES (Gas turbine - Fine Ceramics Evaluation System) which was developed on the basis of statistical strength theory using two parameter Weibull probability distribution. These experiments and analyses demonstrate the integrity of the developed ceramic rotor blade.


Author(s):  
G. A. Kool

Gas turbine engines are constructed of components with excellent strength and stiffness, a minimum density, a high temperature capability for long times, and at affordable cost. Metallic materials are the centrepiece in fulfilling these requirements. Future gas turbine engines will have to have higher thrust-to-weight ratios, better fuel efficiencies and still lower costs. This will require new and advanced lightweight materials with higher temperature capabilities. This paper discusses some of the presently applied materials in the fan, compressor and turbine sections of gas turbines, and reviews the material developments that are occurring and will be necessary for the near and long term futures.


Author(s):  
D. Filsinger ◽  
S. Münz ◽  
A. Schulz ◽  
S. Wittig ◽  
G. Andrees

Experimental and theoretical work concerning the application of ceramic components in small high temperature gas turbines has been performed for several years. The significance of some non-oxide ceramic materials for gas turbines in particular is based on their excellent high temperature properties. The application of ceramic materials allows an increase of the turbine inlet temperature resulting in higher efficiencies and a reduction of pollution emissions. The inherent brittleness of monolithic ceramic materials can be virtually reduced by reinforcement with ceramic fibers leading to a quasi-ductile behavior. Unfortunately, some problems arise due to oxidation of these composite materials in the presence of hot gas flow containing oxygen. At the Motoren- und Turbinen Union, München GmbH, comprehensive investigations including strength, oxidation, and thermal shock tests of several materials that seemed to be appropriate for combustor liner applications were undertaken. As a result, C/C, SiC/SiC, and two C/SiC-composites coated with SiC, as oxidation protection, were chosen for examination in a gas turbine combustion chamber. To prove the suitability of these materials under real engine conditions, the fiber reinforced flame tubes were installed in a small gas turbine operating under varying conditions. The loading of the flame tubes was characterized by wall temperature measurements. The materials showed different oxidation behavior when exposed to the hot gas flow. Inspection of the C/SiC-composites revealed debonding of the coatings. The C/C- and the SiC/SiC-materials withstood the tests with a maximum cumulated test duration of 90 hours without damage.


Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
...  

Over recent decades, the variability and high costs of the traditional gas turbine fuels (e.g. natural gas), have pushed operators to consider low-grade fuels for running heavy-duty frames. Synfuels, obtained from coal, petroleum or biomass gasification, could represent valid alternatives in this sense. Although these alternatives match the reduction of costs and, in the case of biomass sources, would potentially provide a CO2 emission benefit (reduction of the CO2 capture and sequestration costs), these low-grade fuels have a higher content of contaminants. Synfuels are filtered before the combustor stage, but the contaminants are not removed completely. This fact leads to a considerable amount of deposition on the nozzle vanes due to the high temperature value. In addition to this, the continuous demand for increasing gas turbine efficiency, determines a higher combustor outlet temperature. Current advanced gas turbine engines operate at a turbine inlet temperature of (1400–1500) °C which is high enough to melt a high proportion of the contaminants introduced by low-grade fuels. Particle deposition can increase surface roughness, modify the airfoil shape and clog the coolant passages. At the same time, land based power units experience compressor fouling, due to the air contaminants able to pass through the filtration barriers. Hot sections and compressor fouling work together to determine performance degradation. This paper proposes an analysis of the contaminant deposition on hot gas turbine sections based on machine nameplate data. Hot section and compressor fouling are estimated using a fouling susceptibility criterion. The combination of gas turbine net power, efficiency and turbine inlet temperature (TIT) with different types of synfuel contaminants highlights how each gas turbine is subjected to particle deposition. The simulation of particle deposition on one hundred (100) gas turbines ranging from 1.2 MW to 420 MW was conducted following the fouling susceptibility criterion. Using a simplified particle deposition calculation based on TIT and contaminant viscosity estimation, the analysis shows how the correlation between type of contaminant and gas turbine performance plays a key role. The results allow the choice of the best heavy-duty frame as a function of the fuel. Low-efficiency frames (characterized by lower values of TIT) show the best compromise in order to reduce the effects of particle deposition in the presence of high-temperature melting contaminants. A high-efficiency frame is suitable when the contaminants are characterized by a low-melting point thanks to their lower fuel consumption.


Author(s):  
Daniel E. Caguiat ◽  
David M. Zipkin ◽  
Jeffrey S. Patterson

As part of the Gas Turbine Condition Based Maintenance (CBM) Program, Naval Surface Warfare Center, Carderock Division Code 9334 conducted compressor fouling testing on the General Electric LM2500 and Rolls Royce/Allison 501-K Series gas turbines. The objective of these tests was to determine the feasibility of quantifying compressor performance degradation using existing and/or added engine sensors. The end goal of these tests will be to implement an algorithm in the Navy Fleet that will determine the optimum time to detergent crank wash each gas turbine based upon compressor health, fuel economy and other factors which must be determined. Fouling tests were conducted at the Land Based Engineering Site (LBES). For each gas turbine, the test plan that was utilized consisted of injecting a salt solution into the gas turbine inlet, gathering compressor performance and fuel economy data, analyzing the data to verify sensor trends, and assessing the usefulness of each parameter in determining compressor and overall gas turbine health. Based upon data collected during these fouling tests, it seems feasible to accomplish the end goal. Impact Technologies, who analyzed the data sets for both of these fouling tests, has developed a prognostic modeling approach for each of these gas turbines using a combination of the data and probabilistic analysis.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Nicola Aldi ◽  
Nicola Casari ◽  
Mirko Morini ◽  
Michele Pinelli ◽  
Pier Ruggero Spina ◽  
...  

Over recent decades, the variability and high costs of the traditional gas turbine fuels (e.g., natural gas) have pushed operators to consider low-grade fuels for running heavy-duty frames. Synfuels, obtained from coal, petroleum, or biomass gasification, could represent valid alternatives in this sense. Although these alternatives match the reduction of costs and, in the case of biomass sources, would potentially provide a CO2 emission benefit (reduction of the CO2 capture and sequestration costs), these low-grade fuels have a higher content of contaminants. Synfuels are filtered before the combustor stage, but the contaminants are not removed completely. This fact leads to a considerable amount of deposition on the nozzle vanes due to the high temperature value. In addition to this, the continuous demand for increasing gas turbine efficiency determines a higher combustor outlet temperature. Current advanced gas turbine engines operate at a turbine inlet temperature (TIT) of (1400–1500) °C, which is high enough to melt a high proportion of the contaminants introduced by low-grade fuels. Particle deposition can increase surface roughness, modify the airfoil shape, and clog the coolant passages. At the same time, land-based power units experience compressor fouling, due to the air contaminants able to pass through the filtration barriers. Hot sections and compressor fouling work together to determine performance degradation. This paper proposes an analysis of the contaminant deposition on hot gas turbine sections based on machine nameplate data. Hot section and compressor fouling are estimated using a fouling susceptibility criterion. The combination of gas turbine net power, efficiency, and TIT with different types of synfuel contaminants highlights how each gas turbine is subjected to particle deposition. The simulation of particle deposition on 100 gas turbines ranging from 1.2 MW to 420 MW was conducted following the fouling susceptibility criterion. Using a simplified particle deposition calculation based on TIT and contaminant viscosity estimation, the analysis shows how the correlation between type of contaminant and gas turbine performance plays a key role. The results allow the choice of the best heavy-duty frame as a function of the fuel. Low-efficiency frames (characterized by lower values of TIT) show the best compromise in order to reduce the effects of particle deposition in the presence of high-temperature melting contaminants. A high-efficiency frame is suitable when the contaminants are characterized by a low-melting point thanks to their lower fuel consumption.


1997 ◽  
Vol 123 (2) ◽  
pp. 271-276 ◽  
Author(s):  
D. Filsinger ◽  
S. Mu¨nz ◽  
A. Schulz ◽  
S. Wittig ◽  
G. Andrees

Experimental and theoretical work concerning the application of ceramic components in small high-temperature gas turbines has been performed for several years. The significance of some nonoxide ceramic materials for gas turbines in particular is based on their excellent high-temperature properties. The application of ceramic materials allows an increase of the turbine inlet temperature resulting in higher efficiencies and a reduction of pollution emissions. The inherent brittleness of monolithic ceramic materials can be virtually reduced by reinforcement with ceramic fibers leading to a quasiductile behavior. Unfortunately, some problems arise due to oxidation of these composite materials in the presence of hot gas flow containing oxygen. At the Motoren und Turbinen Union, Mu¨nchen GmbH, comprehensive investigations including strength, oxidation, and thermal shock tests of several materials that seemed to be appropriate for combustor liner applications were undertaken. As a result, C/C, SiC/SiC, and two C/SiC composites coated with SiC, as oxidation protection, were chosen for examination in a gas turbine combustion chamber. To prove the suitability of these materials under real engine conditions, the fiber-reinforced flame tubes were installed in a small gas turbine operating under varying conditions. The loading of the flame tubes was characterized by wall temperature measurements. The materials showed different oxidation behavior when exposed to the hot gas flow. Inspection of the C/SiC composites revealed debonding of the coatings. The C/C and SiC/SiC materials withstood the tests with a maximum cumulated test duration of 90 h without damage.


1980 ◽  
Author(s):  
R. L. Graves

The difficulties encountered in past and present efforts to operate direct coal-fired gas turbines are substantial. Hence the development effort required to assure a reliable, high-temperature pressurized fluidized bed (PFBC) combined cycle may be very expensive and time consuming. It is, therefore, important that the benefit of achieving high-temperature operation, which is primarily increased efficiency, be clearly understood at the outset of such a development program. This study characterizes the effects of PFBC temperature and pressure on plant efficiency over a wide range of values. There is an approximate three percentage point advantage by operating at a gas turbine inlet temperature of 870 C (1600 F) instead of 538 C (1000 F). Optimum pressure varies with the gas turbine inlet temperature, but ranges from 0.4–1.0 MPa (4–10 atm). An alternate PFBC cycle offering high efficiency at a peak temperature of about 650 C (1200 F) is also discussed.


Sign in / Sign up

Export Citation Format

Share Document