Combustion Turbine Deposition Observations From Residual and Simulated Residual Oil Studies

Author(s):  
G. A. Whitlow ◽  
S. Y. Lee ◽  
P. R. Mulik ◽  
R. A. Wenglarz ◽  
T. P. Sherlock ◽  
...  

Burning residual oil in utility combustion turbines and the consequent deposition on blades and vanes may adversely affect reliability and operation. Corrosion and deposition data for combustion turbine materials have been obtained through dynamic testing in pressurized passages. The deposition produced by the 1900°F (1038°C) combustion gases from a simulated and a real residual oil on cooled Udimet 500 surfaces is described. Higher deposition rates for the doped fuel than for the real residual oil raised questions of whether true simulation with this approach can be achieved. Particles 4–8 μ m in dia predominated in the gas stream, with some fraction in the 0.1–12 μ m range. Deposition rates seemed to be influenced by thermophoretic delivery of small molten particles, tentatively identified as magnesium pyro and metavanadates and free vanadium pentoxide, which may act to bond the larger, solid particles arriving by inertial impaction to turbine surfaces. Estimated maintenance intervals for current utility turbines operating with washed and treated residual oil agreed well with field experience.

1983 ◽  
Vol 105 (1) ◽  
pp. 88-96 ◽  
Author(s):  
G. A. Whitlow ◽  
S. Y. Lee ◽  
P. R. Mulik ◽  
R. A. Wenglarz ◽  
T. P. Sherlock ◽  
...  

Burning residual oil in utility combustion turbines and the consequent deposition on blades and vanes may adversely affect reliability and operation. Corrosion and deposition data for combustion turbine materials have been obtained through dynamic testing in pressurized passages. The deposition produced by the 1900°F (1038°C) combustion gases from a simulated and a real residual oil on cooled Udimet 500 surfaces is described. Higher deposition rates for the doped fuel than for the real residual oil raised questions of whether true simulation with this approach can be achieved. Particles 4–8 μm in diameter predominated in the gas stream, with some fraction in the 0.1–12 μm range. Deposition rates seemed to be influenced by thermophoretic delivery of small molten particles, tentatively identified as magnesium pyro and metavanadates and free vanadium pentoxide, which may act to bond the larger solid particles arriving by inertial impaction to turbine surfaces. Estimated maintenance intervals for current utility turbines operating with washed and treated residual oil agreed well with field experience.


2017 ◽  
Vol 22 (2) ◽  
Author(s):  
EMILIAN MOȘNEGUȚU ◽  
VALENTIN NEDEFF ◽  
MIRELA PANAINTE-LEHĂDUȘ ◽  
NARCIS BÂRSAN ◽  
DANA CHIȚIMUȘ ◽  
...  

This article presents the methodology for determining the real values of kinematic indices which characterizes the mechanical separation of a mixture of solid particles. Mechanical separation of a mixture of solid-solid on surface provided with holes is the most common method of separation. To optimize equipment that performs this operation, both theoretical and practical characteristics are determined. Kinematic indices are part of the theoretical characteristics, helping to identify behavior of solid particles on a surface flat swing. Starting from an experimental batch, real values of the kinematic indices corresponding to up, down and sideways movement on the sieve were determined for the following types of real particles: grain, large grain beans, small grain beans and soybeans.


Author(s):  
I. Gulyurtlu ◽  
T. Crujeira ◽  
P. Abelha ◽  
D. Boavida ◽  
J. Seabra ◽  
...  

The combustion behaviour of municipal solid waste was studied in a pilot fluidised bed combustor. The waste was pelletised prior to its use. Both co-firing with coal and combustion of waste alone were under taken. The combustion studies were carried out on the pilot installation of INETI. The fluidised bed combustor is square in cross section with each side being 300 mm long. Its height is 5000 mm. There is a second air supply to the freeboard at different heights to deal with high volatile fuels. There was a continuous monitoring of the temperatures in the bed, as well as the composition of the combustion gases. The combustion gases leaving the reactor were let go through the recycling cyclone first to capture most of particulates elutriated out of the combustor. There was a second cyclone which was employed with the aim of increasing the overall efficiency of collecting solid particles. The gaseous pollutants leaving the stack were sampled under iso-kinetic conditions for particulate matter, chlorine compounds and heavy metals. The ash streams were characterised for heavy metals. The results obtained were compared with national legislation. The results obtained suggest that i) the combustion efficiency was very high, ii) there was an enrichment of ashes with heavy metals in the cyclones compared to the bed material, iii) in general, the gaseous pollutants were below the permited limits, and iv) for the compliance with the new European Directive for stricter emission limits adequate control devices, like bag filters, should be integrated with RDF combustion.


Author(s):  
R. A. Wenglarz ◽  
A. Cohn

Relatively simple and inexpensive tests (compared to cascade and turbine tests) have been utilized in deposition evaluations for alternate ash-bearing turbine fuels. These tests use simple cylindrical specimen geometries and test equipment which have adequately simulated turbine corrosion environments in the past. However, deposition rates on a cylindrical test specimen are not the same as deposition rates for turbine airfoils due to geometry differences. An approach is here described for extrapolating measured deposit buildup rates on cylindrical test specimens to project deposit buildup rates on turbine airfoils and turbine maintenance intervals for deposit removal. Deposition environments are identified for which the data extrapolation approach applies. This approach has provided reasonable deposition assessments for turbine operation with residual oil and coal-derived liquid fuels. Using data from residual oil tests representing current turbine operating conditions, maintenance intervals to remove deposits have been predicted which are in agreement with field experience.


2013 ◽  
Vol 430 ◽  
pp. 305-311 ◽  
Author(s):  
Polidor Bratu

The paper presents the result of experimental research of the viscoelastic behavior of the antiseismic elastomeric isolators on stand, in laboratory, where the excitation is given only through harmonic instantaneous displacements. Based on the dynamic response under the form of the elastic and dissipation forces, in the time domain, the hysteresis loops and the stiffness, damping and durability to imposed repeated cycles parameters are determined. In this case, the order I dynamic system is free of added mass which makes the evaluation of its own damping to be estimated as equivalent damping with that of a complete system of 2ndorder with viscous damping.Using elastomeric isolators on site, for a base isolation project, either building or viaduct, imposes corrections of the experimental laboratory values considering the real conditions, function of the dynamic inertial excitation (earthquake, wind gusts, etc.) and of the response in instantaneous displacements.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 907 ◽  
Author(s):  
Dmitry Vlasov ◽  
Jessica Vasil’chuk ◽  
Natalia Kosheleva ◽  
Nikolay Kasimov

Concentrations and ratio of dissolved and suspended forms of metals and metalloids (MMs) in snow cover and their deposition rates from the atmosphere in the western part of Moscow were studied. Forms of MMs were separated using a filter with pore diameter of 0.45 μm; their concentrations were measured by ICP-MS and ICP-AES methods. Anthropogenic impact in Moscow caused a significant increase in dust load (2–7 times), concentration of solid particles in snow cover (2–5 times), and mineralization of snow meltwater (5–18 times) compared to the background level. Urban snow contains Sn, Ti, Bi, Al, W, Fe, Pb, V, Cr, Rb, Mo, Mn, As, Co, Cu, Ba, Sb, Mg mainly in suspended form, and Ca and Na in dissolved form. The role of suspended MMs in the city significantly increases compared to the background region due to high dust load, usage of de-icing salts, and the change of acidic background conditions to alkaline ones. Anthropogenic emissions are the main sources of suspended Ca, W, Co, V, Sr, Ti, Mg, Na, Mo, Zn, Fe, Sb, and Cu in the snow cover of traffic zone. These elements’ concentrations in roadside snow cover exceed the background values more than 25 times. The highest concentrations and deposition rates of MMs in the snow of Moscow are localized near the large and medium roads.


2008 ◽  
Vol 591-593 ◽  
pp. 49-54
Author(s):  
A.B.C. Arnt ◽  
Marcos Marques da Silva Paula ◽  
Márcio Roberto da Rocha ◽  
Elidio Angioletto ◽  
L.C. Zanini ◽  
...  

The machinery used in coal thermoelectrical plants usually is submitted to erosive wear. The erosive wear occurs mainly in the metallic pipe set of heat exchangers due the flow of hot gases carrying erosive particles. Jorge Lacerda’s thermoelectrical complex at Capivari de Baixo city holds seven power units, where two units use approximately 20 000 ASTM A178 heat pipes. The set is submitted to a semester maintenance schedule (preventive and corrective) where the damaged pipes are changed. So, in this work a set of erosive wear accelerated tests according ASTM G76 were performed in order to develop and specify materials and methods to diminish the erosive action caused by the combustion gases over the heat pipes. Specimens were coated with WC12Co and Cr3C2-25NiCr alloys using the HVOF technique and the coated specimens were tested at 450°C, the heat pipes working temperature. Silica was used as abrasive material at 30° and 45° impact angles, simulating a harder erosive condition than the real condition. The best performance coating at laboratory scale was later used in field condition. The results showed the coated specimen performance is better than the ASTM A178 alloy. The erosion resistance of the Cr3C2-25NiCr and WC12Co coatings is eight times higher than the uncoated alloy, and the coatings also presented a better corrosion resistance. This feature is important, because despite the erosive action the circulating gases also present a large amount of sulfur in their composition. Sulfur at lower temperatures forms H2SO4, causing intense corrosion of the pipes located at the heat exchangers colder parts. Based on the results and considering the coating costs the Cr3C2-25NiCr alloy was selected to coat a set of pipes mounted at the region of the heat exchanger with the most intense erosive wear. At the moment these coated tubes are in field operation and under observation regarding their performance in comparison with the uncoated pipes located at the same heat exchanger. The real operation conditions of the coated pipes will be estimated from the field life cycle analysis, and after all the cost-benefit of the studied coating.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Sheng Liu ◽  
Yuan Feng ◽  
Kang Shen ◽  
Yangqing Wang ◽  
Shengyong Chen

Estimating the real-time pose of a free flight aircraft in a complex wind tunnel environment is extremely difficult. Due to the high dynamic testing environment, complicated illumination condition, and the unpredictable motion of target, most general pose estimating methods will fail. In this paper, we introduce a cross-field of view (FOV) real-time pose estimation system, which provides high precision pose estimation of the free flight aircraft in the wind tunnel environment. Multiview live RGB-D streams are used in the system as input to ensure the measurement area can be fully covered. First, a multimodal initialization method is developed to measure the spatial relationship between the RGB-D camera and the aircraft. Based on all the input multimodal information, a so-called cross-FOV model is proposed to recognize the dominating sensor and accurately extract the foreground region in an automatic manner. Second, we develop an RGB-D-based pose estimation method for a single target, by which the 3D sparse points and the pose of the target can be simultaneously obtained in real time. Many experiments have been conducted, and an RGB-D image simulation based on 3D modeling is implemented to verify the effectiveness of our algorithm. Both the real scene’s and simulation scene’s experimental results demonstrate the effectiveness of our method.


Sign in / Sign up

Export Citation Format

Share Document