The Extension of Gas Turbine Power Plants to Combined Cycle Power Stations

Author(s):  
Wolfgang Schemenau ◽  
Ulrich Häuser

In industrial countries as well as in developing countries there is a continuous growth of electricity consumption. The normal way to meet these requirements is the stepwise extension of electricity producing plants. In countries where clean fuel is available at acceptable prices the advantages of combined cycle plants in terms of efficiency and of smooth meeting the requirements can be used. The following essay concentrates on the influences of design criterias and ambient conditions on efficiency, output and plant cost for the type of CCP which is most frequently excecuted. As a result of an optimization an executed plant is described also with regard to lay out, required space and erection time.

Author(s):  
Hany Rizkalla ◽  
Timothy Hui ◽  
Fred Hernandez ◽  
Matthew Yaquinto ◽  
Ramesh KeshavaBhattu

Abstract Renewables proliferation in the energy market is driving the need for flexibility in gas fired power plants to enable a wider and emissions compliant operability range. The ability for a gas fired plant to peak fire while maintaining emissions compliance, full life interval capability, improved simple and combined cycle heat rate and the ability to achieve extended turndown, positions a gas fired asset to benefit from an improved capacity factor, and overall economic viability in an increasingly renewables’ dependent energy market. The low pressure drop FlameSheet™ combustor variant’s implementation alongside PSM’s Gas Turbine Optimization Package (GTOP3.1) on a commercially operating frame 7FA heavy duty gas turbine in 2018 and as introduced in GT2019-91647, is presented with emphasis on extended validation of operational and emissions/tuning performance at different ambient conditions, higher peak firing and minimum load after one year of continuous commercial operation. The output and heat rate improvement achieved with the FlameSheet™/GTOP3.1 conversion thus enabling improved capacity is also discussed. As shale gas continue to grow as a dominant source of the U.S Natural gas supply, the need for fuel flexible combustion systems enabling tolerance to higher ethane/ethylene concentrations associated with Shale gas is required for improved operability. The adverse impact and means to mitigate such higher ethane/ethylene content on standard F-Class heavy duty combustion systems is also presented as part of said FlameSheet™/GTOP 3.1 conversion.


Author(s):  
Hsiao-Wei D. Chiang ◽  
Pai-Yi Wang ◽  
Hsin-Lung Li

With increasing demand for power and with shortages envisioned especially during the peak load times during the summer, there is a need to boost gas turbine power. In Taiwan, most of gas turbines operate with combined cycle for base load. Only a small portion of gas turbines operates with simple cycle for peak load. To prevent the electric shortage due to derating of power plants in hot days, the power augmentation strategies for combined cycles need to be studied in advance. As a solution, our objective is to add an overspray inlet fogging system into an existing gas turbine-based combined cycle power plant (CCPP) to study the effects. Simulation runs were made for adding an overspray inlet fogging system to the CCPP under various ambient conditions. The overspray percentage effects on the CCPP thermodynamic performance are also included in this paper. Results demonstrated that the CCPP net power augmentation depends on the percentage of overspray under site average ambient conditions. This paper also included CCPP performance parametric studies in order to propose overspray inlet fogging guidelines for combined cycle power augmentation.


Energy ◽  
2017 ◽  
Vol 134 ◽  
pp. 221-233 ◽  
Author(s):  
Abigail González-Díaz ◽  
Agustín M. Alcaráz-Calderón ◽  
Maria Ortencia González-Díaz ◽  
Ángel Méndez-Aranda ◽  
Mathieu Lucquiaud ◽  
...  

Author(s):  
Manuel Valde´s ◽  
Antonio Rovira ◽  
Jose´ A. Ferna´ndez

This paper deals with the calculation of the ambient conditions influence on combined cycle gas turbine (CCGT) power and efficiency. The main parameters influencing the CCGT performances when ambient conditions change are the air density and the steam condenser pressure. An 800 MW CCGT is studied in order to obtain numerical results in a particular case. This power plant is analyzed working with different condenser cooling techniques (direct or indirect cooling with open or closed circuits) at both 100% and 50% load. The results show that power output drops by 0.60% to 0.65% are to be expected for every 1 °C rise in ambient temperature and by 0.13% to 0.14% for every 1 mbar decrease in ambient pressure. The efficiencies are affected to a lesser extent since some of the gas turbine waste energy is recovered in the heat recovery steam generator and the steam turbine power is almost constant.


2003 ◽  
Vol 23 (17) ◽  
pp. 2169-2182 ◽  
Author(s):  
Manuel Valdés ◽  
Ma Dolores Durán ◽  
Antonio Rovira

2000 ◽  
Vol 124 (1) ◽  
pp. 89-95 ◽  
Author(s):  
G. Lozza ◽  
P. Chiesa

This paper discusses novel schemes of combined cycle, where natural gas is chemically treated to remove carbon, rather than being directly used as fuel. Carbon conversion to CO2 is achieved before gas turbine combustion. The first part of the paper discussed plant configurations based on natural gas partial oxidation to produce carbon monoxide, converted to carbon dioxide by shift reaction and therefore separated from the fuel gas. The second part will address methane reforming as a starting reaction to achieve the same goal. Plant configuration and performance differs from the previous case because reforming is endothermic and requires high temperature heat and low operating pressure to obtain an elevated carbon conversion. The performance estimation shows that the reformer configuration has a lower efficiency and power output than the systems addressed in Part I. To improve the results, a reheat gas turbine can be used, with different characteristics from commercial machines. The thermodynamic efficiency of the systems of the two papers is compared by an exergetic analysis. The economic performance of natural gas fired power plants including CO2 sequestration is therefore addressed, finding a superiority of the partial oxidation system with chemical absorption. The additional cost of the kWh, due to the ability of CO2 capturing, can be estimated at about 13–14 mill$/kWh.


Author(s):  
Nicola Palestra ◽  
Giovanna Barigozzi ◽  
Antonio Perdichizzi

The paper presents the results of an investigation on inlet air cooling systems based on cool thermal storage, applied to combined cycle power plants. Such systems provide a significant increase of electric energy production in the peak hours; the charge of the cool thermal storage is performed instead during the night time. The inlet air cooling system also allows the plant to reduce power output dependence on ambient conditions. A 127MW combined cycle power plant operating in the Italian scenario is the object of this investigation. Two different technologies for cool thermal storage have been considered: ice harvester and stratified chilled water. To evaluate the performance of the combined cycle under different operating conditions, inlet cooling systems have been simulated with an in-house developed computational code. An economical analysis has been then performed. Different plant location sites have been considered, with the purpose to weigh up the influence of climatic conditions. Finally, a parametric analysis has been carried out in order to investigate how a variation of the thermal storage size affects the combined cycle performances and the investment profitability. It was found that both cool thermal storage technologies considered perform similarly in terms of gross extra production of energy. Despite this, the ice harvester shows higher parasitic load due to chillers consumptions. Warmer climates of the plant site resulted in a greater increase in the amount of operational hours than power output augmentation; investment profitability is different as well. Results of parametric analysis showed how important the size of inlet cooling storage may be for economical results.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


Author(s):  
Akber Pasha

In recent years the combined cycle has become a very attractive power plant arrangement because of its high cycle efficiency, short order-to-on-line time and flexibility in the sizing when compared to conventional steam power plants. However, optimization of the cycle and selection of combined cycle equipment has become more complex because the three major components, Gas Turbine, Heat Recovery Steam Generator and Steam Turbine, are often designed and built by different manufacturers. Heat Recovery Steam Generators are classified into two major categories — 1) Natural Circulation and 2) Forced Circulation. Both circulation designs have certain advantages, disadvantages and limitations. This paper analyzes various factors including; availability, start-up, gas turbine exhaust conditions, reliability, space requirements, etc., which are affected by the type of circulation and which in turn affect the design, price and performance of the Heat Recovery Steam Generator. Modern trends around the world are discussed and conclusions are drawn as to the best type of circulation for a Heat Recovery Steam Generator for combined cycle application.


2014 ◽  
Vol 35 (4) ◽  
pp. 83-95 ◽  
Author(s):  
Daniel Czaja ◽  
Tadeusz Chmielnak ◽  
Sebastian Lepszy

Abstract A thermodynamic and economic analysis of a GT10 gas turbine integrated with the air bottoming cycle is presented. The results are compared to commercially available combined cycle power plants based on the same gas turbine. The systems under analysis have a better chance of competing with steam bottoming cycle configurations in a small range of the power output capacity. The aim of the calculations is to determine the final cost of electricity generated by the gas turbine air bottoming cycle based on a 25 MW GT10 gas turbine with the exhaust gas mass flow rate of about 80 kg/s. The article shows the results of thermodynamic optimization of the selection of the technological structure of gas turbine air bottoming cycle and of a comparative economic analysis. Quantities are determined that have a decisive impact on the considered units profitability and competitiveness compared to the popular technology based on the steam bottoming cycle. The ultimate quantity that can be compared in the calculations is the cost of 1 MWh of electricity. It should be noted that the systems analyzed herein are power plants where electricity is the only generated product. The performed calculations do not take account of any other (potential) revenues from the sale of energy origin certificates. Keywords: Gas turbine air bottoming cycle, Air bottoming cycle, Gas turbine, GT10


Sign in / Sign up

Export Citation Format

Share Document