Low DP FlameSheet™ Extended Validation of a Flexible, Low Emissions, Higher Output and Efficiency F-Class Turbine Upgrade

Author(s):  
Hany Rizkalla ◽  
Timothy Hui ◽  
Fred Hernandez ◽  
Matthew Yaquinto ◽  
Ramesh KeshavaBhattu

Abstract Renewables proliferation in the energy market is driving the need for flexibility in gas fired power plants to enable a wider and emissions compliant operability range. The ability for a gas fired plant to peak fire while maintaining emissions compliance, full life interval capability, improved simple and combined cycle heat rate and the ability to achieve extended turndown, positions a gas fired asset to benefit from an improved capacity factor, and overall economic viability in an increasingly renewables’ dependent energy market. The low pressure drop FlameSheet™ combustor variant’s implementation alongside PSM’s Gas Turbine Optimization Package (GTOP3.1) on a commercially operating frame 7FA heavy duty gas turbine in 2018 and as introduced in GT2019-91647, is presented with emphasis on extended validation of operational and emissions/tuning performance at different ambient conditions, higher peak firing and minimum load after one year of continuous commercial operation. The output and heat rate improvement achieved with the FlameSheet™/GTOP3.1 conversion thus enabling improved capacity is also discussed. As shale gas continue to grow as a dominant source of the U.S Natural gas supply, the need for fuel flexible combustion systems enabling tolerance to higher ethane/ethylene concentrations associated with Shale gas is required for improved operability. The adverse impact and means to mitigate such higher ethane/ethylene content on standard F-Class heavy duty combustion systems is also presented as part of said FlameSheet™/GTOP 3.1 conversion.

Author(s):  
Majed Sammak ◽  
Maruthi Jupudi ◽  
Brad Kippel ◽  
Jalal Zia

Abstract This paper introduces a novel evaporative cooling system. The digital hybrid evaporative cooler works under a wide range of evaporative cooling effectiveness from 0% to 100%. It consists of several evaporative cooling media installed in a row with a fixed space in between. By operating the evaporative cooling system with varied numbers of evaporative cooling media in service, the evaporative cooling percentage can be changed from 0% to 100%. This digital hybrid evaporative cooler can thus be used to achieve a desired combined cycle power and heat rate as well as reduced water consumption. The study was performed on GE heavy duty gas turbine. The selected combined cycle was 1-on-1 (one gas turbine, one heat recovery steam generator and one steam turbine train). The heat recovery steam generator was a 3-pressure level with reheat. The study showed the evaporative cooling effectiveness impact on gas turbine parameters. The studied parameters were firing temperature, gas turbine exhaust temperature, exhaust energy, gas turbine power and heat rate. Furthermore, the combined cycle heat rate improvement at different combined cycle loads and cooling effectiveness was analysed. The analysis was performed on combined cycle loads from 100% to 80% load with 5% interval. The selected evaporative cooling effectiveness at these loads were 90, 70, 50 and 30 percent respectively. The combined cycle heat rate at 80%-part load and 30% evaporative cooling effectiveness was calculated at two ambient conditions in a selected site in the Middle East. At the ambient conditions of 43°C/30%RH, the combined cycle heat rate improvement was 0.56%. At the ambient conditions of 35°C/40%RH, the combined cycle heat rate improvement was 0.38%. The digital evaporative cooler is also a mean of achieving water expense target. Reducing the evaporative cooling effectiveness from 90% to 30% would allow for an approximate of 60% saving in water consumption. This digital hybrid evaporative cooler is connected to a control system which collects data from the gas turbine key parameters and depending on the requirements the system determines the number of evaporative cooling media in service.


Author(s):  
Wolfgang Schemenau ◽  
Ulrich Häuser

In industrial countries as well as in developing countries there is a continuous growth of electricity consumption. The normal way to meet these requirements is the stepwise extension of electricity producing plants. In countries where clean fuel is available at acceptable prices the advantages of combined cycle plants in terms of efficiency and of smooth meeting the requirements can be used. The following essay concentrates on the influences of design criterias and ambient conditions on efficiency, output and plant cost for the type of CCP which is most frequently excecuted. As a result of an optimization an executed plant is described also with regard to lay out, required space and erection time.


2021 ◽  
Author(s):  
Majed Sammak ◽  
Chi Ho ◽  
Alaaeldin Dawood ◽  
Abdurrahman Khalidi

Abstract The gas turbine inlet air heating system has been used for improving the combined cycle heat rate at part load operation, which has a positive impact on the combined cycle profitability and fuel consumption. The paper objective was to introduce a new gas turbine inlet air heating system. The inlet air heating system studied in this paper was exhaust gas recirculation into inlet air compressor through an ejector. The ejector motive flow was defined as the compressor bleed air from the compressor discharge section while the ejector entrainment flow was defined as the recirculated exhaust gases from the gas turbine exhaust duct. This study was performed on generic gas turbine and combined cycle model. The selected combined cycle model was 1-on-1 (one gas turbine, one heat recovery steam generator and one steam turbine train). The heat recovery steam generator was a 3-pressure level with reheat. The combined cycle heat rate improvement at different ejector entrainment ratio varying from 0.5 to 5 with 0.5 intervals was studied. The selected ejector area ratio was set to 25 which together with the motive to suction pressure ratio gave an entrainment ratio of 2.5. The selected ejector entrainment ratio of 2.5 was aligned with the common practice design of the ejectors. The ejector motive flow was limited to 1% of compressor inlet air flow. Furthermore, the combined cycle heat rate improvement at different combined cycle loads were analysed. The analysis was performed on combined cycle loads from 90% to 40% load with a 10% interval and at the ambient temperatures 7°C, 15°C and 35°C. At the ambient temperatures 7°C, 15°C and 35°C, the combined cycle heat rate improvement was measured at loads below 80%. The combined cycle heat rate improvements proved greater at lower combined cycle loads and lower ambient temperatures. The combined cycle heat rate improvement was 0.67% at the ambient temperature 15°C and 60% combined cycle load. On the other hand, the combined cycle heat rate improvement was 1.4% at 40% combined cycle load and ambient temperature 7°C.


Author(s):  
Tarek A. Tawfik ◽  
Thomas P. Smith

Retrofitting existing power generation plants by repowering is becoming an attractive option to improve plant performance with less cost. “Hot Windbox Repowering” involves utilizing the hot exhaust gas from a combustion gas turbine and using it as combustion air for an existing fossil-fuel boiler. “Combined Cycle Repowering” or “Full Repowering” involves completely replacing the existing boiler with a combined cycle consisting of a gas turbine(s) and a heat recovery steam generator (HRSG). The existing steam turbine will be used in both repowering scenarios. This paper discusses an engineering study and summarizes the results obtained from repowering an existing heavy-oil / natural gas fired steam power plant in the north east of the United States. The plant consists of a 600 MW boiler and steam turbine. Several engineering studies were considered and evaluated thermodynamically and economically to retrofit such plant. Several options were considered involving different gas turbines, gas turbine combinations, and different repowering methods. The best option is based on retrofitting the unit by a combination of both, hot windbox repowering and combined cycle repowering. The proposed design consists of one gas turbine repowering the windbox of the existing boiler, and a second gas turbine operating in a separate combined cycle configuration with the generated superheated steam tying into the main steam line and expanding in the existing steam turbine. Several heat balances were developed to assist in obtaining meaningful results for this feasibility study. Actual costs were obtained for the gas turbines and heat recovery steam generators (HRSG), as well as installation costs for a more accurate evaluation. The results indicate that the combined output of the repowered unit will generate an additional 295 MW and reduce the heat rate by more than 11 percent at full load and annual average ambient conditions. The estimated capital cost of the project is expected to range from $235 to $245 millions.


Author(s):  
Nina Hepperle ◽  
Dirk Therkorn ◽  
Ernst Schneider ◽  
Stephan Staudacher

Recoverable and non-recoverable performance degradation has a significant impact on power plant revenues. A more in depth understanding and quantification of recoverable degradation enables operators to optimize plant operation. OEM degradation curves represent usually non-recoverable degradation, but actual power output and heat rate is affected by both, recoverable and non-recoverable degradation. This paper presents an empirical method to correct longterm performance data of gas turbine and combined cycle power plants for recoverable degradation. Performance degradation can be assessed with standard plant instrumentation data, which has to be systematically stored, reduced, corrected and analyzed. Recoverable degradation includes mainly compressor and air inlet filter fouling, but also instrumentation degradation such as condensate in pressure sensing lines, condenser or bypass valve leakages. The presented correction method includes corrections of these effects for gas turbine and water steam cycle components. Applying the corrections on longterm operating data enables staff to assess the non-recoverable performance degradation any time. It can also be used to predict recovery potential of maintenance activities like compressor washings, instrumentation calibration or leakage repair. The presented correction methods are validated with long-term performance data of several power plants. It is shown that the degradation rate is site-specific and influenced by boundary conditions, which have to be considered for degradation assessments.


Author(s):  
Bjorn Kaupang ◽  
Douglas M. Todd

Significant progress has been made in the installation and initial operation of several IGCC power plants. At least six IGCC projects are scheduled to enter commercial operation in the USA and in Europe during 1996. Several additional IGCC projects are under construction or under development using many different gasification systems. Gas turbine manufacturers introduced advanced gas turbine technology in 1995, resulting in IGCC efficiency for coal and heavy oil-fired plants of up to 50% (LHV) with plant costs consistent with conventional steam plants. Gas turbine developments specifically aimed at IGCC applications allow the use of environmentally low quality fuels without added impact on the environment. This paper discusses the current operating experience of several of the initial IGCC plants and illustrates the very attractive fuels flexibility with the combined-cycle plants burning naphtha or distillate oils initially with later conversions to IGCC burning lignite, heavy oil or orimulsion. This paper also discusses the heat rate and output performance capabilities of the IGCC with H level gas turbine technology and the resulting impacts on the cost of electricity from IGCC plants.


Author(s):  
Rodney R. Gay

Traditionally optimization has been thought of as a technology to set power plant controllable parameters (i.e. gas turbine power levels, duct burner fuel flows, auxiliary boiler fuel flows or bypass/letdown flows) so as to maximize plant operations. However, there are additional applications of optimizer technology that may be even more beneficial than simply finding the best control settings for current operation. Most smaller, simpler power plants (such as a single gas turbine in combined cycle operation) perceive little need for on-line optimization, but in fact could benefit significantly from the application of optimizer technology. An optimizer must contain a mathematical model of the power plant performance and of the economic revenue and cost streams associated with the plant. This model can be exercised in the “what-if” mode to supply valuable on-line information to the plant operators. The following quantities can be calculated: Target Heat Rate Correction of Current Plant Operation to Guarantee Conditions Current Power Generation Capacity (Availability) Average Cost of a Megawatt Produced Cost of Last Megawatt Cost of Process Steam Produced Cost of Last Pound of Process Steam Heat Rate Increment Due to Load Change Prediction of Future Power Generation Capability (24 Hour Prediction) Prediction of Future Fuel Consumption (24 Hour Prediction) Impact of Equipment Operational Constraints Impact of Maintenance Actions Plant Budget Analysis Comparison of Various Operational Strategies Over Time Evaluation of Plant Upgrades The paper describes examples of optimizer applications other than the on-line computation of control setting that have provided benefit to plant operators. Actual plant data will be used to illustrate the examples.


Author(s):  
Hsiao-Wei D. Chiang ◽  
Pai-Yi Wang ◽  
Hsin-Lung Li

With increasing demand for power and with shortages envisioned especially during the peak load times during the summer, there is a need to boost gas turbine power. In Taiwan, most of gas turbines operate with combined cycle for base load. Only a small portion of gas turbines operates with simple cycle for peak load. To prevent the electric shortage due to derating of power plants in hot days, the power augmentation strategies for combined cycles need to be studied in advance. As a solution, our objective is to add an overspray inlet fogging system into an existing gas turbine-based combined cycle power plant (CCPP) to study the effects. Simulation runs were made for adding an overspray inlet fogging system to the CCPP under various ambient conditions. The overspray percentage effects on the CCPP thermodynamic performance are also included in this paper. Results demonstrated that the CCPP net power augmentation depends on the percentage of overspray under site average ambient conditions. This paper also included CCPP performance parametric studies in order to propose overspray inlet fogging guidelines for combined cycle power augmentation.


Energy ◽  
2017 ◽  
Vol 134 ◽  
pp. 221-233 ◽  
Author(s):  
Abigail González-Díaz ◽  
Agustín M. Alcaráz-Calderón ◽  
Maria Ortencia González-Díaz ◽  
Ángel Méndez-Aranda ◽  
Mathieu Lucquiaud ◽  
...  

Author(s):  
Hany Rizkalla ◽  
Fred Hernandez ◽  
Ramesh KeshavaBhattu ◽  
Peter Stuttaford

Flexibility is key to the future success of natural gas fired power generation. As renewable energy sources continue their penetration of the global energy market, the need for reliable, flexible generation will increase. Gas turbines equipped with a fuel flexible combustion system allowing the capability to extend in-emissions-compliance turndown limit, will have a significant advantage supporting todays and future energy market demand. The FlameSheet™ combustor incorporates a novel dual zone burn system to address operational and fuel flexibility with low emissions and extended turndown. FlameSheet™ is simply retrofittable into existing installed E/F-class heavy duty gas turbines and is designed to meet the energy market drivers set forth above. The operating principle of the new combustor is briefly described, and details of implementation and extended validation results on two General Electric 7FA heavy duty gas turbines operating in a combined cycle power plant since 2015 with over 36,600hrs of uninterrupted commercial operation is discussed, with special focus on operational profile optimization to accommodate the heat recovery steam generator (HRSG), while substantially increasing the gas turbine normal operating load range. Emphasis is also provided on performance assessment, combustion and downstream hot gas path component inspection and durability assessment after 16,600 hours of operation in a 7FA gas turbine.


Sign in / Sign up

Export Citation Format

Share Document