scholarly journals Computation of Flow Past a Turbine Blade With and Without Tip Clearance

Author(s):  
W. R. Briley ◽  
D. V. Roscoe ◽  
H. J. Gibeling ◽  
R. C. Buggeln ◽  
J. S. Sabnis ◽  
...  

Three-dimensional solutions of the ensemble-averaged Navier-Stokes equations have been computed for a high-turning turbine rotor passage, both with and without tip clearance effects. The geometry is Pratt & Whitney’s preliminary design for the Generic Gas Generator Turbine (GGGT), having an axial chord of 0.5 inch and turning angle of about 160 degrees. The solutions match the design Reynolds number of 3x 106/inch and design inflow/outflow distributions of flow quantities. The grid contains 627,000 points, including 20 radial points in the clearance gap of 0.015 inch, and has a minimum spacing of 10−4 inch adjacent to all surfaces. The solutions account for relative motion of the blade and shroud surfaces and include a backstep on the shroud. Computed results are presented which show the general flow behavior, especially near the tip clearance and backstep regions. The results are generally consistent with experimental observations for other geometries having thinner blades and smaller turning angles. The leakage flow includes some fluid originally in the freestream at 91 percent span. Downstream, the leakage flow behaves as a wall jet directed at 100 degrees to the main stream, with total pressure and temperature higher than the freestream. Radial distributions of circumferentially-averaged flow quantities are compared for solutions with and without tip leakage flow. Two-dimensional solutions are also presented for the mid-span blade geometry for design and off-design inflow angles.

Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


Author(s):  
R. Heider ◽  
J. M. Duboue ◽  
B. Petot ◽  
G. Billonnet ◽  
V. Couaillier ◽  
...  

A 3D Navier-Stokes investigation of a high pressure turbine rotor blade including tip clearance effects is presented. The 3D Navier-Stokes code developed at ONERA solves the three-dimensional unsteady set of mass-averaged Navier-Stokes equations by the finite volume technique. A one step Lax-Wendroff type scheme is used in a rotating frame of reference. An implicit residual smoothing technique has been implemented, which accelerates the convergence towards the steady state. A mixing length model adapted to 3D configurations is used. The turbine rotor flow is calculated at transonic operating conditions. The tip clearance effect is taken into account. The gap region is discretized using more than 55,000 points within a multi-domain approach. The solution accounts for the relative motion of the blade and casing surfaces. The total mesh is composed of five sub-domains and counts 710,000 discretization points. The effect of the tip clearance on the main flow is demonstrated. The calculation results are compared to a 3D inviscid calculation, without tip clearance.


Author(s):  
Qinghua Deng ◽  
Jiufang Niu ◽  
Zhenping Feng

In this paper, tip clearance flow in a radial inflow turbine rotor under the stage environment is investigated using a three-dimensional viscous flow simulation with three different blade-shroud gap heights of 1%, 2% and 3% of the local span. The results indicate that more relative casing motion increases the scraping effect on tip leakage flow at the rotor entrance. Also, the scraping flow can dominate the whole tip clearance at the rotor entrance when the velocity is high enough at the rotor tip diameter. Regardless of the transverse mass flow rates of the three tip clearances, the results strongly exhibit the characteristics of linearity when the relative meridional length S is greater than 40%. According to the analysis of leakage flow fields in the tip clearance, measures such as a circumference slot, axial slot, or honeycomb are proposed to be applied and placed at the shroud surface over the exducer of the rotor for effectively reducing the transverse flow.


1988 ◽  
Vol 110 (3) ◽  
pp. 329-338 ◽  
Author(s):  
A. Yamamoto

In order to study the loss generation mechanisms due to the tip-leakage flow in turbine rotor passages, extensive traverse measurements were made of the three-dimensional flows in a low-speed linear cascade for various tip-clearance sizes and for various cascade inlet flow angles (or incidences). Effects of the leakage flow on the cascade downstream flow fields and interactions between the leakage flow and the passage vortices are discussed in detail based on the traverse measurements and flow-visualization tests in terms of secondary flows and the associated losses. Other traverses were also performed of the tip-casing endwall flows both inside and outside the tip-clearance gap using a micro five-hole pitot tube to reveal the axial development of the interaction throughout the cascade passage. Overall loss characteristics of the present high-turning cascade with blunt leading and trailing edges are obtained and compared with those predicted by the Ainley–Mathieson method.


Author(s):  
Rubén Bruno Díaz ◽  
Jesuino Takachi Tomita ◽  
Cleverson Bringhenti ◽  
Francisco Carlos Elizio de Paula ◽  
Luiz Henrique Lindquist Whitacker

Abstract Numerical simulations were carried out with the purpose of investigating the effect of applying circumferential grooves at axial compressor casing passive wall treatment to enhance the stall margin and change the tip leakage flow. The tip leakage flow is pointed out as one of the main contributors to stall inception in axial compressors. Hence, it is of major importance to treat appropriately the flow in this region. Circumferential grooves have shown a good performance in enhancing the stall margin in previous researches by changing the flow path in the tip clearance region. In this work, a passive wall treatment with four circumferential grooves was applied in the transonic axial compressor NASA Rotor 37. Its effect on the axial compressor performance and the flow in the tip clearance region was analyzed and set against the results attained for the smooth wall case. A 2.63% increase in the operational range of the axial compressor running at 100%N, was achieved, when compared with the original smooth wall casing configuration. The grooves installed at compressor casing, causes an increase in the flow entropy generation due to the high viscous effects in this gap region, between the rotor tip surface and casing with grooves. These viscous effects cause a drop in the turbomachine efficiency. For the grooves configurations used in this work, an efficiency drop of 0.7% was observed, compared with the original smooth wall. All the simulations were performed based on 3D turbulent flow calculations using Reynolds Averaged Navier-Stokes equations, and the flow eddy viscosity was determined using the two-equation SST turbulence model. The details of the grooves geometrical dimensions and its implementation are described in the paper.


Author(s):  
Wei Li ◽  
Wei-Yang Qiao ◽  
Kai-Fu Xu ◽  
Hua-Ling Luo

The tip leakage flow has significant effects on turbine in loss production, aerodynamic efficiency, etc. Then it’s important to minimize these effects for a better performance by adopting corresponding flow control. The active turbine tip clearance flow control with injection from the tip platform is given in Part-1 of this paper. This paper is Part-2 of the two-part papers focusing on the effect of five different passive turbine tip clearance flow control methods on the tip clearance flow physics, which consists of a partial suction side squealer tip (Partial SS Squealer), a double squealer tip (Double Side Squealer), a pressure side tip shelf with inclined squealer tip on a double squealer tip (Improved PS Squealer), a tip platform extension edge in pressure side (PS Extension) and in suction side (SS Extension) respectively. Combined with the turbine rotor and the numerical method mentioned in Part 1, the effects of passive turbine tip clearance flow controls on the tip clearance flow were sequentially simulated. The detailed tip clearance flow fields with different squealer rims were described with the streamline and the velocity vector in various planes parallel to the tip platform or normal to the tip leakage vortex core. Accordingly, the mechanisms of five passive controls were put in evidence; the effects of the passive controls on the turbine efficiency and the tip clearance flow field were highlighted. The results show that the secondary flow loss near the outer casing including the tip leakage flow and the casing boundary layer can be reduced in all the five passive control methods. Comparing the active control with the passive control, the effect brought by the active injection control on the tip leakage flow is evident. The turbine rotor efficiency could be increased via the rational passive turbine tip clearance flow control. The Improved PS Squealer had the best effect on turbine rotor efficiency, and it increased by 0.215%.


Author(s):  
N. Lymberopoulos ◽  
K. Giannakoglou ◽  
I. Nikolaou ◽  
K. D. Papailiou ◽  
A. Tourlidakis ◽  
...  

Mechanical constraints dictate the existence of tip clearances in rotating cascades, resulting to a flow leakage through this clearance which considerably influences the efficiency and range of operation of the machine. Three-dimensional Navier-Stokes solvers are often used for the numerical study of compressor and turbine stages with tip-clearance. The quality of numerical predictions depends strongly on how accurately the blade tip region is modelled; in this respect the accurate modelling of tip region was one of the main goals of this work. In the present paper, a 3-D Navier-Stokes solver is suitably adapted so that the flat tip surface of a blade and its sharp edges could be accurately modelled, in order to improve the precision of the calculation in the tip region. The adapted code solves the fully elliptic, steady, Navier-Stokes equations through a space-marching algorithm and a pressure correction technique; the H-type topology is retained, even in cases with thick leading edges where a special treatment is introduced herein. The analysis is applied to two different cases, a linear cascade and a compressor rotor, and comparisons with experimental data are provided.


Author(s):  
Man-Woong Heo ◽  
Tae-Wan Seo ◽  
Chung-Suk Lee ◽  
Kwang-Yong Kim

This paper presents a parametric study to investigate the aerodynamic and aeroacoustic characteristics of a side channel regenerative blower. Flow analysis in the side channel blower was carried out by solving three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence closure. Aeroacoustic analysis was conducted by solving the variational formulation of Lighthill’s analogy on the basis of the aerodynamic sources extracted from the unsteady flow analysis. The height and width of the blade and the angle between inlet and outlet ports were selected as three geometric parameters, and their effects on the aerodynamic and aeroacoustic performances of the blower have been investigated. The results showed that the aerodynamic and aeroacoustic performances were enhanced by decreasing height and width of blade. It was found that angle between inlet and outlet ports significantly influences the aerodynamic and aeroacoustic performances of the blower due to the stripper leakage flow.


1991 ◽  
Vol 113 (2) ◽  
pp. 252-259 ◽  
Author(s):  
J. A. Storer ◽  
N. A. Cumpsty

Experimental measurements in a linear cascade with tip clearance are complemented by numerical solutions of the three-dimensional Navier–Stokes equations in an investigation of tip leakage flow. Measurements reveal that the clearance flow, which separates near the entry of the tip gap, remains unattached for the majority of the blade chord when the tip clearance is similar to that typical of a machine. The numerical predictions of leakage flow rate agree very well with measurements, and detailed comparisons show that the mechanism of tip leakage is primarily inviscid. It is demonstrated by simple calculation that it is the static pressure field near the end of the blade that controls chordwise distribution of the flow across the tip. Although the presence of a vortex caused by the roll-up of the leakage flow may affect the local pressure field, the overall magnitude of the tip leakage flow remains strongly related to the aerodynamic loading of the blades.


2015 ◽  
Vol 772 ◽  
pp. 552-555 ◽  
Author(s):  
Kyu Han Kim ◽  
Joni Cahyono

The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. In the present study, the numerical solution of the discredited three-dimensional, incompressible Navier-Stokes equations over an unstructured grid is accomplished with an ANSYS program. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The results trends are similar between the highest pressure distributions at the impeller also produced highest power outputs on 6 numbers of blades at impeller. The model has been validated, comparing numerical results with available experimental data.


Sign in / Sign up

Export Citation Format

Share Document