Ceramic Stationary Gas Turbine Development

Author(s):  
Mark van Roode ◽  
William D. Brentnall ◽  
Paul F. Norton ◽  
Gregory P. Pytanowski

A program has been initiated under the sponsorship of the Department of Energy (DOE), Office of Industrial Technology, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of metallic hot section parts with uncooled ceramic components. It is envisioned that the successful demonstration of ceramic gas turbine technology, and the systematic incorporation of ceramics in existing and future gas turbines will enable more efficient engine operation, resulting in significant fuel savings, increased output power, and reduced emissions. The program which started in September, 1992, takes an engine of the Solar Centaur family of industrial gas turbines, and modifies the design of the hot section to accept ceramic first stage blades and first stage nozzles, and a ceramic combustor liner. The ceramic materials selected for the blade are silicon nitride, for the nozzle silicon nitride and silicon carbide, and for the combustor liner silicon carbide as well as two continuous fiber reinforced ceramic composites, one with a silicon carbide matrix and another with an oxide matrix. This paper outlines the approach, conceptual component design, and materials selection for the program.

Author(s):  
Mark van Roode ◽  
William D. Brentnall ◽  
Paul F. Norton ◽  
Gary L. Boyd

A program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technology, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. It is envisioned that the successful demonstration of ceramic gas turbine technology, and the systematic incorporation of ceramics in existing and future gas turbines will enable more efficient engine operation, resulting in significant fuel savings, increased output power, and reduced emissions. The engine selected for the program, the Centaur 50 (formerly named Centaur ‘H’) will be retrofitted with first stage ceramic blades, first stage ceramic nozzles, and a ceramic combustor liner. The engine hot section is being redesigned to adapt the ceramic parts to the existing metallic support structure. The work in Phase 1 of the program involved concept and preliminary engine and component design, ceramic materials selection, technical and economic evaluation, and concept assessment. A detailed work plan was developed for Phases II and III of the program. The work in Phase II addresses detailed engine and component design, and ceramic specimen and component procurement and testing. Ceramic blades, nozzles, and combustor liners will be tested in subscale rigs and in a gasifier rig which is a modified Centaur 50 engine. The Phase II effort also involves long term testing of ceramics, development of appropriate nondestructive technologies for part evaluation, and component life prediction. Phase III of the program focuses on a 4,000 hour engine test at a cogeneration site. This paper summarizes the progress on the program through the end of 1993.


Author(s):  
Harry E. Eaton ◽  
Gary D. Linsey ◽  
Karren L. More ◽  
Joshua B. Kimmel ◽  
Jeffrey R. Price ◽  
...  

Silicon carbide fiber reinforced silicon carbide composites (SiC/SiC) are attractive for use in gas turbine engines as combustor liner materials, in part, because the temperature capability allows for reduced cooling. This enables the engine to operate more efficiently and to meet very stringent emission goals for NOx and CO. It has been shown, however, that SiC/SiC and other silica formers can degrade with time in the high steam environment of the gas turbine combustor due to accelerated oxidation and subsequent volatilization of the silica due to reaction with high pressure water (ref.s 1 & 2). As a result, an environmental barrier coating (EBC) is required in conjunction with the SiC composite in order to meet long life goals. Under the U.S. Department of Energy (DOE) sponsored Solar Turbines Incorporated Ceramic Stationary Gas Turbine (CSGT) engine program (ref. 3), EBC systems developed under the HSCT EPM program (NASA contract NAS3-23685) were applied to both SiC/SiC composite coupons and SiC/SiC combustion liners which were then evaluated in long term laboratory testing and in ground based turbine power generation, respectively. This paper discusses the application of the EBC’s to SiC/SiC composites and the results from laboratory and engine test evaluations.


Author(s):  
Harry E. Eaton ◽  
Gary D. Linsey ◽  
Ellen Y. Sun ◽  
Karren L. More ◽  
Joshua B. Kimmel ◽  
...  

Silicon carbide fiber reinforced silicon carbide composites (SiC/SiC CMC’s) are attractive for use in gas turbine engines as combustor liner materials because the temperature capability allows for reduced cooling. This enables the engine to operate more efficiently and enables the design of very stringent emission goals for NOx and CO. It has been shown, however, that SiC/SiC CMC’s and other silica formers can degrade with time in the high steam environment of the gas turbine combustor due to accelerated oxidation and subsequent volatilization of the silica due to reaction with high pressure water (ref.s 1, 2, 3, & 4). As a result, an environmental barrier coating (EBC) is required in conjunction with the SiC/SiC CMC in order to meet long life goals. Under the U.S. Department of Energy (DOE) sponsored Solar Turbines Incorporated Ceramic Stationary Gas Turbine (CSGT) engine program (ref. 5), EBC systems developed under the HSCT EPM program and improved under the CSGT program have been applied to both SiC/SiC CMC coupons and SiC/SiC CMC combustion liners which have been evaluated in long term laboratory testing and in ground based turbine power generation. This paper discusses the continuing evaluation (see ref. 6) of EBC application to SiC/SiC CMC’s and the results from laboratory and engine test evaluations along with refurbishment considerations.


Author(s):  
Paul F. Norton ◽  
Gary A. Frey ◽  
Hamid Bagheri ◽  
Aaron Flerstein ◽  
Chris Twardochleb ◽  
...  

A program is being performed under the sponsorship of the United States Department of Energy, Office of Industrial Technology, to improve the performance of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. It is envisioned that the successful demonstration of ceramic gas turbine technology, and the systematic incorporation of ceramics in existing and future gas turbines will enable more efficient engine operation, resulting in significant fuel savings, increased output power, and reduced emissions. The engine selected for the program, the Centaur 50 (formerly named Centaur ‘H’) will be retrofitted with first stage ceramic blades, first stage ceramic nozzles, and a ceramic combustor liner. The engine hot section is being redesigned to adapt the ceramic parts to the existing metallic support structure. The program currently in Phase II focuses on detailed engine and component design, ceramic component fabrication, ceramic component testing, establishment of a long term materials property database, and the development and application of supporting technologies in the areas of life prediction and non-destructive evaluation. This paper outlines the design activities associated with the introduction of a ceramic first stage nozzle and two configurations of ceramic first stage turbine blade. In addition, probabilistic life assessment of the ceramic parts for major failure modes (fast fracture, slow crack growth and where relevant, creep and oxidation) will be discussed.


Author(s):  
Oscar Jimenez ◽  
John McClain ◽  
Bryan Edwards ◽  
Vijay Parthasarathy ◽  
Hamid Bagheri ◽  
...  

The goal of the Ceramic Stationary Gas Turbine (CSGT) Development Program, under the sponsorship of the United States Department of Energy (DOE), Office of Industrial Technologies (OIT), is to improve the performance (fuel efficiency, output power, and exhaust emissions) of stationary gas turbines in cogeneration through the selective replacement of hot section components with ceramic parts. This program, which is headed by Solar Turbines Incorporated and supported by various suppliers, and national research institutes, includes detailed engine and component design, procurement, and field testing. A major challenge in the successful introduction of ceramic parts into a gas turbine is the design of the interface between the ceramic parts and metallic hardware. A turbine blade, which incorporated a dovetail root, was designed with such considerations. A relatively thin compliant layer between the ceramic-metallic loading surface was considered for equalizing pressure face load distributions. Five monolithic siliocn nitride ceramic materials were considered: AS800 and GN10, AlliedSignal Ceramic Components; NT164, Norton Advanced Ceramics; SN281 and SN253, Kyocera Industrial Ceramics Corporation. The probability of survival using NASA/CARES for 30,000 hours of engine operation was calculated for each material. The blade frequencies, stresses, and temperatures were predicted. The influence of the dovetail angle was also analyzed to determine the most optimum configuration. Prior to engine installation all blades underwent extensive nondestructive evaluation and spin proof testing. This paper will review the design, life prediction, and testing of the first stage ceramic turbine blade for the Solar Turbines Centaur 5OS engine.


1975 ◽  
Author(s):  
R. K. Bart ◽  
E. W. Hauck ◽  
M. L. Torti

The introduction of ceramic vanes into gas turbines has required simultaneous materials and manufacturing development programs. A review of the materials development programs is presented to show that hot pressed silicon nitride and silicon carbide are consistent engineering materials. A discussion of general machining parameters including diamond wheel specifications is presented to provide guidance in the preparation of turbine components from hot pressed silicon nitride and silicon carbide.


Author(s):  
John P. Pollinger

New and improved silicon nitride structural ceramic materials and component fabrication processes are being developed and refined for implementation and insertion into aerospace, industrial, and automotive gas turbine applications. These improved materials and forming processes offer the potential of meeting turbomachinery manufacturers’ performance, quality, cost, and production volume goals. AlliedSignal has developed a new generation of silicon nitride materials with isotropic acicular microstructures that result in a number of property improvements compared to current HIP’ed fine-grained silicon nitride materials. Concurrently, new silicon nitride component forming processes such as gelcasting and refinements of current forming processes such as presintered component machining are being developed and refined to achieve production volume fabrication capability, yields, and short cycle times at low costs. As these materials and component fabrication processes are maturating, a number of applications are being investigated and demonstrated including hot section turbomachinery components for aircraft auxiliary power units (APU’s), industrial gas turbines, and automotive hybrid electric vehicle turboalternators.


Author(s):  
G. L. Boyd ◽  
W. D. Carruthers ◽  
R. J. Evershed ◽  
J. R. Kidwell

The Garrett/Ford Advanced Gas Turbine (AGT101) technology project has made significant progress in the areas of ceramic component design, analysis, and test evaluation using an iterative approach. Design stress limits are being defined for state-of-the-art fine ceramics with good correlation between analytical predictions and empirical results. Recent tests in both rigs and engines are demonstrating the feasibility of high temperature/strength ceramic materials in the gas turbine environment. Component transient stress fields are being defined providing the data base for lower stress/longer life component design. Thermally induced transient stresses to 220 MPa (32 ksi) in reaction bonded silicon nitride (RBSN), 310 MPa (45 ksi) in sintered alpha silicon carbide (SASC), and 345 MPa (50 ksi) in sintered silicon nitride (SSN) have been successfully demonstrated in AGT101 component screening and qualification test rigs.


Author(s):  
J. Paul Day

This paper discusses the ongoing development of a ceramic regenerator for a high temperature automotive gas turbine engine sponsored by the U.S. Department of Energy. The ceramic gas turbine has a steady state gas inlet temperature of 774°C and a 982°C peak acceleration temperature which precludes the use of metallic discs. Ceramic materials have successfully operated to 982°C, with a peak acceleration temperature exceeding 1093°C. Ceramic regenerator temperature capability is currently limited by seal tribomaterial properties. The requirements of the ceramic regenerator, ceramic disc materials being evaluated, and the processing of these materials to obtain the required strength, chemical resistance, cost, including quality control are discussed. The status of the extruded regenerator program to date will also be described.


Author(s):  
Paul S. DiMascio ◽  
Robert M. Orenstein ◽  
Harindra Rajiyah

A three year program to evaluate the feasibility of using monolithic silicon nitride ceramic components in gas turbines was conducted. The use of ceramic materials may enable design of turbine components which operate at higher gas temperatures and/or require less cooling air than their metal counterparts. The feasibility evaluation consisted of three tasks: 1) Expand the material properties database for candidate silicon nitride materials, 2) Demonstrate the ability to predict ceramic reliability and life using a conceptual component model and 3) Evaluate the effect of proof testing on conceptual component reliability. The overall feasibility goal was to determine whether established life and reliability targets could be satisfied for the conceptual ceramic component having properties of an available material. Fast and delayed fracture reliability models were developed and validated via thermal shock and tensile experiments. A creep model was developed using tensile creep data. The effect of oxidation was empirically evaluated using four-point flexure samples exposed to flowing natural gas combustion products. The reliability- and life-limiting failure mechanisms were characterized in terms of temperature, stress and probability of component failure. Conservative limits for design of silicon nitride gas turbine components were established.


Sign in / Sign up

Export Citation Format

Share Document