The Influence of Large Scale, High Intensity Turbulence on Vane Aerodynamic Losses, Wake Growth, and the Exit Turbulence Parameters

Author(s):  
Forrest E. Ames ◽  
Michael W. Plesniak

An experimental research program was undertaken to examine the influence of large-scale high, intensity turbulence on vane exit losses, wake growth, and exit turbulence characteristics. The experiment was conducted in a four vane linear cascade at an exit Reynolds number of 800, 000 based on chord length and an exit Mach number of 0.27. Exit measurements were made for four inlet turbulence conditions including a low turbulence case (Tu ≈ 1%), a grid-generated turbulence case (Tu ≈ 7.5%), and two levels of large-scale turbulence generated with a mock combustor (Tu ≈ 12% & Tu ≈ 8%). Exit total pressure surveys were taken at two locations to quantify total pressure losses. The suction surface boundary layer was also traversed to determine losses due boundary layer growth. Losses were also found in the core of the flow for the elevated turbulence cases. The elevated free stream turbulence was found to have a significant effect on wake growth. Generally, the wakes subjected to elevated free stream turbulence were broader and had smaller peak velocity deficits. Reynolds stress profiles exhibited asymmetry in peak amplitudes about the wake centerline, which are attributable to differences in the evolution of the boundary layers on the pressure and suction surfaces of the vanes. The overall level of turbulence and dissipation inside the wakes and in the free stream was determined to document the rotor inlet boundary conditions. This is useful information for assessing rotor heat transfer and aerodynamics. Eddy diffusivities and mixing lengths were estimated using X-wire measurements of turbulent shear stress. The free stream turbulence was found to strongly affect eddy diffusivities, and thus wake mixing. At the last measuring position, the average eddy diffusivity in the wake of the high turbulence close combustor configuration (Tu ≈ 12) was three times that of the low turbulence wake.

1997 ◽  
Vol 119 (2) ◽  
pp. 182-192 ◽  
Author(s):  
F. E. Ames ◽  
M. W. Plesniak

An experimental research program was undertaken to examine the influence of large-scale high-intensity turbulence on vane exit losses, wake growth, and exit turbulence characteristics. The experiment was conducted in a four-vane linear cascade at an exit Reynolds number of 800,000 based on chord length and an exit Mach number of 0.27. Exit measurements were made for four inlet turbulence conditions including a low-turbulence case (Tu ≈ 1 percent), a grid-generated turbulence case (Tu ≈ 7.5. percent) and two levels of large-scale turbulence generated with a mock combustor (Tu ≈ 12 and 8 percent). Exit total pressure surveys were taken at two locations to quantify total pressure losses. The suction surface boundary layer was also traversed to determine losses due to boundary layer growth. Losses occurred in the core of the flow for the elevated turbulence cases. The elevated free-stream turbulence was found to have a significant effect on wake growth. Generally, the wakes subjected to elevated free-stream turbulence were broader and had smaller peak velocity deficits. Reynolds stress profiles exhibited asymmetry in peak amplitudes about the wake centerline, which are attributable to differences in the evolution of the boundary layers on the pressure and suction surfaces of the vanes. The overall level of turbulence and dissipation inside the wakes and in the free stream was determined to document the rotor inlet boundary conditions. This is useful information for assessing rotor heat transfer and aerodynamics. Eddy diffusivities and mixing lengths were estimated using X-wire measurements of turbulent shear stress. The free-stream turbulence was found to strongly affect eddy diffusivities, and thus wake mixing. At the last measuring position, the average eddy diffusivity in the wake of the high-turbulence close combustor configuration (Tu ≈ 12) was three times that of the low turbulence wake.


2010 ◽  
Vol 665 ◽  
pp. 57-98 ◽  
Author(s):  
TAMER A. ZAKI ◽  
JAN G. WISSINK ◽  
WOLFGANG RODI ◽  
PAUL A. DURBIN

The flow through a compressor passage without and with incoming free-stream grid turbulence is simulated. At moderate Reynolds number, laminar-to-turbulence transition can take place on both sides of the aerofoil, but proceeds in distinctly different manners. The direct numerical simulations (DNS) of this flow reveal the mechanics of breakdown to turbulence on both surfaces of the blade. The pressure surface boundary layer undergoes laminar separation in the absence of free-stream disturbances. When exposed to free-stream forcing, the boundary layer remains attached due to transition to turbulence upstream of the laminar separation point. Three types of breakdowns are observed; they combine characteristics of natural and bypass transition. In particular, instability waves, which trace back to discrete modes of the base flow, can be observed, but their development is not independent of the Klebanoff distortions that are caused by free-stream turbulent forcing. At a higher turbulence intensity, the transition mechanism shifts to a purely bypass scenario. Unlike the pressure side, the suction surface boundary layer separates independent of the free-stream condition, be it laminar or a moderate free-stream turbulence of intensityTu~ 3%. Upstream of the separation, the amplification of the Klebanoff distortions is suppressed in the favourable pressure gradient (FPG) region. This suppression is in agreement with simulations of constant pressure gradient boundary layers. FPG is normally stabilizing with respect to bypass transition to turbulence, but is, thereby, unfavourable with respect to separation. Downstream of the FPG section, a strong adverse pressure gradient (APG) on the suction surface of the blade causes the laminar boundary layer to separate. The separation surface is modulated in the instantaneous fields of the Klebanoff distortion inside the shear layer, which consists of forward and backward jet-like perturbations. Separation is followed by breakdown to turbulence and reattachment. As the free-stream turbulence intensity is increased,Tu~ 6.5%, transitional turbulent patches are initiated, and interact with the downstream separated flow, causing local attachment. The calming effect, or delayed re-establishment of the boundary layer separation, is observed in the wake of the turbulent events.


Author(s):  
Ashley D. Scillitoe ◽  
Paul G. Tucker ◽  
Paolo Adami

Regions of three-dimensional separations are an inherent flow feature of the suction surface - endwall corner in axial compressors. These corner separations can cause a significant total pressure loss and reduce the compressor’s efficiency. This paper uses wall-resolved LES to investigate the loss sources in a corner separation, and examines the influence of the inflow turbulence on these sources. Different subgrid scale (SGS) models are tested and the choice of model is found to be important. The σ SGS model, which performed well, is then used to perform LES of a compressor endwall flow. The time-averaged data is in good agreement with measurements. The viscous and turbulent dissipation are used to highlight the sources of loss, with the latter being dominant. The key loss sources are seen to be the 2D laminar separation bubble and trailing edge wake, and the 3D flow region near the endwall. Increasing the free-stream turbulence intensity (FST) changes the suction surface boundary layer transition mode from separation induced to bypass. However, it doesn’t significantly alter the transition location and therefore the corner separation size. Additionally, the FST doesn’t noticeably interact with the corner separation itself, meaning that in this case the corner separation is relatively insensitive to the FST. The endwall boundary layer state is found to be significant. A laminar endwall boundary layer separates much earlier leading to a larger passage vortex. This significantly alters the endwall flow and loss. Hence, the need for accurate boundary measurements is clear.


1988 ◽  
Author(s):  
S. B. Vijayaraghavan ◽  
P. Kavanagh

Experiments were conducted with glue-on hot-film gages in a large-scale axial turbine cascade to identify transition and/or separation on the suction surface of the blade. Standard strain-gage type temperature sensors were adapted and used as the gages and Transition and separation were identified by examining the mean and RMS voltage output. To assist with interpreting the output of the gages, surface oil-flow visualizations were used. Results of this study showed that transition and separation could be easily identified with the hot-film gages. Depending upon the Reynolds number and free stream turbulence level, the suction surface boundary layer was found to undergo bubble-induced transition, natural transition, or a combination of both; i.e, a transition which started naturally but ended abruptly with a bubble.


Author(s):  
Michael P. Schultz ◽  
Ralph J. Volino

An experimental investigation has been carried out on a transitional boundary layer subject to high (initially 9%) free-stream turbulence, strong acceleration K=ν/Uw2dUw/dxas high as9×10-6, and strong concave curvature (boundary layer thickness between 2% and 5% of the wall radius of curvature). Mean and fluctuating velocity as well as turbulent shear stress are documented and compared to results from equivalent cases on a flat wall and a wall with milder concave curvature. The data show that curvature does have a significant effect, moving the transition location upstream, increasing turbulent transport, and causing skin friction to rise by as much as 40%. Conditional sampling results are presented which show that the curvature effect is present in both the turbulent and non-turbulent zones of the transitional flow.


1997 ◽  
Vol 3 (3) ◽  
pp. 255-265
Author(s):  
Eugen Dyban ◽  
Ella Fridman

In order to analyze the relaxation effects in a turbulent boundary layer with zero and nonzero free stream turbulence, the Reynolds-averaged equations of motion and energy are solved. As the closure of the Reynolds-averaged equations, the transport equation for turbulent shear stresses is used. The proposed approach leads to calculation of the relaxation scales in the turbulent boundary layer with zero and nonzero free stream turbulence. Results for friction coefficients, velocity profiles, shear stresses, thickness of the boundary layer and so called “superlayer” in a flat-plate turbulent boundary layer are presented. The results obtained are in agreement with those available from the experimental data.


Author(s):  
Ralph J. Volino

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re = 25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.


1988 ◽  
Vol 92 (916) ◽  
pp. 224-229
Author(s):  
P. E. Roach

Summary The procedures employed for the design of a closed-circuit, boundary layer wind tunnel are described. The tunnel was designed for the generation of relatively large-scale, two-dimensional boundary layers with Reynolds numbers, pressure gradients and free-stream turbulence levels typical of the turbomachinery environment. The results of a series of tests to evaluate the tunnel performance are also described. The flow in the test section is shown to be highly uniform and steady, with very low (natural) free-stream turbulence intensities. Measured boundary layer mean and fluctuating velocity profiles were found to be in good agreement with classical correlations. Test-section free-stream turbulence intensities are presented for grid-generated turbulence: agreement with expectation is again found to be good. Immediate applications to the tunnel include friction drag reduction and boundary layer transition studies, with future possibilities including flow separation and other complex flows typical of those found in gas turbines.


Author(s):  
Mahmoud Ardebili ◽  
Yiannis Andreopoulos

An experimental investigation of a separated boundary layer flow has been attempted which has been created by perturbing a flat plate flow with a favorable pressure gradient immediately followed by an adverse pressure gradient. The aim of the research program is possible control of flow separation by means of free stream turbulence. The flow is configured in a large-scale low speed wind tunnel where measurements of turbulence can be obtained with high spatial and temporal resolution. A model has been designed by using CFD analysis. Mean wall pressure and vorticity flux measurements are reported in this paper. Twelve experiments with three different mesh size grids at three different Reynolds numbers have been carried out. Three bulk flow parameters seem to characterize the flow: The Reynolds number of the boundary layer, Re+, the Reynolds number of the flow through the grid, ReM, and the solidity of the grid. It was found that the pressure coefficient depends weakly on the solidity of the grids. Vorticity flux also depends on the grid used to generate free stream turbulence. The location of maximum or minimum vorticity flux moves upstream at higher ReM.


Author(s):  
Ralph J. Volino ◽  
Michael P. Schultz ◽  
Christopher M. Pratt

Conditional sampling has been performed on data from a transitional boundary layer subject to high (initially 9%) free-stream turbulence and strong K=ν/U∞2dU∞/dxas high as9×10-6 acceleration. Methods for separating the turbulent and non-turbulent zone data based on the instantaneous streamwise velocity and the turbulent shear stress were tested and found to agree. Mean velocity profiles were clearly different in the turbulent and non-turbulent zones, and skin friction coefficients were as much as 70% higher in the turbulent zone. The streamwise fluctuating velocity, in contrast, was only about 10% higher in the turbulent zone. Turbulent shear stress differed by an order of magnitude, and eddy viscosity was three to four times higher in the turbulent zone. Eddy transport in the non-turbulent zone was still significant, however, and the non-turbulent zone did not behave like a laminar boundary layer. Within each of the two zones there was considerable self-similarity from the beginning to the end of transition. This may prove useful for future modeling efforts.


Sign in / Sign up

Export Citation Format

Share Document