scholarly journals Steady-State and Transient Performance Simulation of a Turboshaft Engine With Free Power Turbine

Author(s):  
Changduk Kong ◽  
Jayoung Ki ◽  
Kwangwoong Koh

Steady-state and transient performance analysis programs for 200kw-class small turboshaft engine with free power turbine were developed. An existing turbojet engine was used for the gas generator of the developed turboshaft engine, and it was modified to satisfy performance requirements of this turboshaft engine. To verify the availability of steady-state performance program for this engine: the program was applied to the same type gas turbine test unit, and the analysis results were compared to experimental results. The developed transient performance analysis program using the CMF (Constant Mass flow) method was utilized to analysis in the cases of fuel step increase and the ramp increase.

Author(s):  
Jayoung Ki ◽  
Changduk Kong ◽  
Seonghee Kho ◽  
Changho Lee

Because an aircraft gas turbine operates under various flight conditions that change with altitude, flight velocity, and ambient temperature, the performance estimation that considers the flight conditions must be known before developing or operating the gas turbine. More so, for the unmanned aerial vehicle (UAV) where the engine is activated by an onboard engine controller in emergencies, the precise performance model including the estimated steady-state and transient performance data should be provided to the engine control system and the engine health monitoring system. In this study, a graphic user interface (GUI) type steady-state and transient performance simulation model of the PW206C turboshaft engine that was adopted for use in the Smart UAV was developed using SIMULINK for the performance analysis. For the simulation model, first the component maps including the compressor, gas generator turbine, and power turbine were inversely generated from the manufacturer’s limited performance deck data by the hybrid method. For the work and mass flow matching between components of the steady-state simulation, the state-flow library of SIMULINK was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with the manufacturer’s performance deck data. According to comparison results, it was confirmed that the steady-state model agreed well with the deck data within 3% in all flight envelopes. In the transient performance simulation model, the continuity of mass flow (CMF) method was used, and the rotational speed change was calculated by integrating the excess torque due to the transient fuel flow change using the Runge–Kutta method. In this transient performance simulation, the turbine overshoot was predicted.


Author(s):  
Jayoung Ki ◽  
Changduk Kong ◽  
Seonghee Kho ◽  
Changho Lee

Because aircraft gas turbine operates under various flight conditions that changes with altitude, flight velocity and ambient temperature, performance estimation that considers the flight conditions must be known before developing or operating the gas turbine. More so, for the UAV (Unmanned Aerial Vehicle) where the engine is activated by an onboard engine controller in emergency, the precise performance model including the estimated steady-state and transient performance data should be provided to the engine control system and the engine health monitoring system. In this study, a GUI (Graphic User Interface) type steady-state and transient performance simulation model of the PW206C turbo shaft engine that was adopted for use on the Smart UAV was developed using SIMULINK for performance analysis. For the simulation model, firstly the component maps including compressor, gas generator turbine and power turbine were inversely generated from manufacturer’s limited performance deck data by Hybrid Method. For the work and mass flow matching between components of the steady-state simulation, the state-flow library of SIMULINK was applied. The proposed steady-state performance model can simulate off-design point performance at various flight conditions and part loads, and in order to evaluate the steady-state performance model their simulation results were compared with manufacturer’s performance deck data. According to comparison results, it was confirm that the steady-state model well agreed with the deck data within 3% in all flight envelop. In the transient performance simulation model, the CMF (Continuity of Mass Flow) method was used and the rotational speed change was calculated by integrating the excess torque due to the transient fuel flow change using Runge-Kutta method. In this transient performance simulation, the turbine overshoot was predicted.


2004 ◽  
Vol 40 (2) ◽  
pp. 516-525 ◽  
Author(s):  
T.J.E. Miller ◽  
M. Popescu ◽  
C. Cossar ◽  
M. McGilp ◽  
G. Strappazzon ◽  
...  

Author(s):  
Minghui Zheng ◽  
Xu Chen ◽  
Masayoshi Tomizuka

This paper aims to develop a nonlinear control algorithm to break the limitations of linear PID controls and improve the transient performance during the short-span track seeking / settling in hard disk drives (HDDs). It is designed based on a baseline PID controller which is well-designed to obtain good track following performance. The control algorithm is a combination of a nonlinear PID controller and a nonlinear turbo controller (NTC): when the position error signal (PES) is large, NTC assists the nonlinear PID controller to rapidly reduce the error; when PES is small, NTC is turned off to avoid possible chattering and ensure good steady state performance. As PES becomes even smaller, the nonlinear PID controller is reduced to the baseline PID controller to keep good steady state performance.


Author(s):  
Peter C. Frith

The results from an experimental study into the effect of compressor rotor tip clearance changes on the steady-state performance and stability margins of a free-power turbine turboshaft engine are presented and discussed. This work was directed at the development of methods to diagnose engine condition from gas path measurements. It was found that the normal production suite of engine instrumentation was able to measure the deterioration in engine performance due to the implanted compressor degradation and the resultant deviations in the measured parameters from their respective nominal baselines do provide useful indicators of engine condition.


Sign in / Sign up

Export Citation Format

Share Document