Pressure and Shock Waves in Bubbly Liquids

Author(s):  
Shahid Mahmood ◽  
Yungpil Yoo ◽  
Ho-Young Kwak

It is well known that sound propagation in liquid media is strongly affected by the presence of gas bubbles that interact with sound and in turn affect the medium. An explicit form of a wave equation in a bubbly liquid medium was obtained in this study. Using the linearized wave equation and the Keller-Miksis equation for bubble wall motion, a dispersion relation for the linear pressure wave propagation in bubbly liquids was obtained. It was found that attenuation of the waves in bubbly liquid occurs due to the viscosity and the heat transfer from/to the bubble. In particular, at the lower frequency region, the thermal diffusion has a considerable affect on the frequency-dependent attenuation coefficients. The phase velocity and the attenuation coefficient obtained from the dispersion relation are in good agreement with the observed values in all sound frequency ranges from kHz to MHz. Shock wave propagation in bubbly mixtures was also considered with the solution of the wave equation, whose particular solution represents the interaction between bubbles. The calculated pressure profiles are in close agreement with those obtained in shock tube experiments for a uniform bubbly flow. Heat exchange between the gas bubbles and the liquid and the interaction between bubbles were found to be very important factor to affect the relaxation oscillation behind the the shock front.

1985 ◽  
Vol 107 (2) ◽  
pp. 402-408 ◽  
Author(s):  
L. Y. Cheng ◽  
D. A. Drew ◽  
R. T. Lahey

Wave propagation in bubbly two-phase, two-component flow was analyzed to assess the validity of some interfacial transfer laws for two-fluid models of two-phase flow. A dispersion relation was derived from the linearized conservation equations and the Rayleigh equation. The phase velocity and wave attenuation calculated from the dispersion relation, compared well with existing high- and low-frequency data. The virtual mass term was found to have a significant effect on wave dispersion in the bubbly flow regime. Thermal effects were found to be important in determining the resonance phenomenon and wave scattering was a major source of damping at frequencies higher than the resonance frequency.


1985 ◽  
Vol 160 ◽  
pp. 1-14 ◽  
Author(s):  
Russel E. Caflisch ◽  
Michael J. Miksis ◽  
George C. Papanicolaou ◽  
Lu Ting

We derive effective equations for wave propagation in a bubbly liquid in a linearized low-frequency regime by a multiple-scale method. The effective equations are valid for finite volume fraction. For periodic bubble configurations, effective equations uniformly valid for small volume fraction are obtained. We compare the results to the ones obtained in a previous paper (Caflisch et al. 1985) for a nonlinear theory at small volume fraction.


Geophysics ◽  
2016 ◽  
Vol 81 (6) ◽  
pp. C337-C354 ◽  
Author(s):  
Jörg Schleicher ◽  
Jessé C. Costa

The wave equation can be tailored to describe wave propagation in vertical-symmetry axis transversely isotropic (VTI) media. The qP- and qS-wave eikonal equations derived from the VTI wave equation indicate that in the pseudoacoustic approximation, their dispersion relations degenerate into a single one. Therefore, when using this dispersion relation for wave simulation, for instance, by means of finite-difference approximations, both events are generated. To avoid the occurrence of the pseudo-S-wave, the qP-wave dispersion relation alone needs to be approximated. This can be done with or without the pseudoacoustic approximation. A Padé expansion of the exact qP-wave dispersion relation leads to a very good approximation. Our implementation of a separable version of this equation in the mixed space-wavenumber domain permits it to be compared with a low-rank solution of the exact qP-wave dispersion relation. Our numerical experiments showed that this approximation can provide highly accurate wavefields, even in strongly anisotropic inhomogeneous media.


1990 ◽  
Vol 56 (525) ◽  
pp. 1237-1243
Author(s):  
Yoichro MATSUMOTO ◽  
Hideji NISHIKAWA ◽  
Hideo OHASHI

1999 ◽  
Vol 07 (02) ◽  
pp. 71-82
Author(s):  
A. NADIM ◽  
D. GOLDMAN ◽  
J. J. CARTMELL ◽  
P. E. BARBONE

One-dimensional traveling wave solutions to the fully nonlinear continuity and Euler equations in a bubbly liquid are considered. The elimination of velocity from the two equations leaves a single nonlinear algebraic relation between the pressure and density profiles in the mixture. On assuming the bubbles to have identical size and taking the volume fraction of bubbles in the medium to be small, an equation of state which relates the mixture pressure to the density and its first two material time-derivatives is derived. When this equation of state is linearized and combined with the laws of conservation of mass and momentum, a nonlinear, second-order, ordinary differential equation is obtained for the density as a function of the single traveling wave coordinate. A phase-plane analysis of this equation reveals the existence of two fixed points, one of which is a saddle and the other a node. A single trajectory connects the two fixed points and corresponds to a traveling shock wave solution when the Mach number of the wave, defined as the ratio of traveling wave speed to the low-frequency speed of sound in the bubbly liquid, exceeds unity. The analysis provides a qualitative explanation of the oscillations behind shocks seen in experiments on bubbly liquids.


1986 ◽  
Vol 29 (258) ◽  
pp. 4235-4240
Author(s):  
Terushige FUJII ◽  
Koji AKAGAWA ◽  
Nobuyuki TAKENAKA ◽  
Sadao TSUBOKURA ◽  
Yoichi HIRAOKA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document