Spatio-Temporal Correlations of Hydrodynamic Forces on Particles in an Oscillatory Wall-Bounded Flow Environment

Author(s):  
Chaitanya D. Ghodke ◽  
Sourabh V. Apte

Particle-resolved direct numerical simulations are performed using fictitious domain approach [1] to investigate the effect of an oscillatory flow field over a rough wall made up of a regular hexagonal pack of fixed spherical particles, in a setup similar to the experimental configuration of [2]. Turbulent flows at Reynolds numbers, Reδ = 200 and 400 (based on the Stokes-layer thickness δ) are studied. The unsteady nature of hydrodynamic forces on particles and their cross-correlations with measurable flow variables are investigated. Temporal correlations showed drag and lift to be positively correlated with a phase difference, which is approximately equal to the Taylor micro-scale related to drag/lift correlations. Spatio-temporal correlations between the flow field and particle-related quantities showed that the lift force is well correlated with the streamwise velocity fluctuations up to distances of the same order as the particle diameter, beyond which the cross correlation decays considerably. On the other hand, the pressure fluctuations are correlated and anti-correlated with the lift force in the front and aft regions of the particle, respectively, as a result of wake effects. Further statistical analyses showed that the near-bed velocity and pressure fluctuations fit poorly with Gaussian distributions. Instead, a fourth order Gram-Charlier distribution model is proposed that may have consequences on the Gaussian descriptions of sediment pick-up functions typically used in quantification of turbulent transport of sediment particles.

Author(s):  
Chaitanya D. Ghodke ◽  
Sourabh V. Apte

Particle-resolved direct numerical simulations are performed using fictitious domain approach [1] to investigate the effect of an oscillatory flow field over a rough wall made up of a regular hexagonal pack of fixed spherical particles, in a setup similar to the experimental configuration of [2]. Turbulent flows at Reynolds numbers, Reδ = 200 and 400 (based on the Stokes-layer thickness δ) are studied. The unsteady nature of hydrodynamic forces on particles and their cross-correlations with measurable flow variables are investigated. Temporal correlations showed drag and lift to be positively correlated with a phase difference, which is approximately equal to the Taylor micro-scale related to drag/lift correlations. Spatio-temporal correlations between the flow field and particle-related quantities showed that the lift force is well correlated with the streamwise velocity fluctuations up to distances of the same order as the particle diameter, beyond which the cross correlation decays considerably. On the other hand, the pressure fluctuations are correlated and anti-correlated with the lift force in the front and aft regions of the particle, respectively, as a result of wake effects. Further statistical analyses showed that the near-bed velocity and pressure fluctuations fit poorly with Gaussian distributions. Instead, a fourth order Gram-Charlier distribution model is proposed that may have consequences on the Gaussian descriptions of sediment pick-up functions typically used in quantification of turbulent transport of sediment particles.


2016 ◽  
Vol 792 ◽  
pp. 232-251 ◽  
Author(s):  
Chaitanya D. Ghodke ◽  
Sourabh V. Apte

Particle-resolved direct numerical simulations (DNS) are performed to investigate the behaviour of an oscillatory flow field over a rough bed, corresponding to the experimental set-up of Keiller & Sleath (J. Fluid Mech., vol. 73 (04), 1976, pp. 673–691) for transitional and turbulent flows over a range of Reynolds numbers (95–400) based on the Stokes-layer thickness. It is shown that the roughness modulates the near-bed turbulence, produces streamwise horseshoe structures which then undergo distortion and breaking, and therefore reduces the large-scale anisotropy. A fully developed equilibrium turbulence is observed in the central part of the oscillation cycle, with two-component turbulence in the near-bed region and cigar-shaped turbulence in the outer region. A double averaging of the flow field reveals spatial inhomogeneities at the roughness scale and alternate paths of energy transport in the turbulent kinetic energy (TKE) budget. Contrary to the unidirectional, steady flow over rough beds, bed-induced production terms are important and comparable to the shear production term. It is shown that the near-bed velocity and pressure fluctuations are non-Gaussian, a result of critical importance for the modelling of incipient motion of sediment grains.


2013 ◽  
Author(s):  
J. Ravnik ◽  
C. Marchioli ◽  
M. Hriberšek ◽  
A. Soldati

2015 ◽  
Vol 769 ◽  
pp. 298-336 ◽  
Author(s):  
Feifei Tong ◽  
Liang Cheng ◽  
Ming Zhao ◽  
Hongwei An

Sinusoidally oscillatory flow around four circular cylinders in an in-line square arrangement is numerically investigated at Keulegan–Carpenter numbers ($\mathit{KC}$) ranging from 1 to 12 and at Reynolds numbers ($\mathit{Re}$) from 20 to 200. A set of flow patterns is observed and classified based on known oscillatory flow regimes around a single cylinder. These include six types of reflection symmetry regimes to the axis of flow oscillation, two types of spatio-temporal symmetry regimes and a series of symmetry-breaking flow patterns. In general, at small gap distances, the four structures behave more like a single body, and the flow fields therefore resemble those around a single cylinder with a large effective cylinder diameter. With increasing gap distance, flow structures around each individual cylinder in the array start to influence the overall flow patterns, and the flow field shows a variety of symmetry and asymmetry patterns as a result of vortex and shear layer interactions. The characteristics of hydrodynamic forces on individual cylinders as well as on the cylinder group are also examined. It is found that the hydrodynamic forces respond in a similar manner to the flow field to the cylinder proximity and wake interference.


Author(s):  
Xiao-Dong Li ◽  
Qing-Zhou Zhai

Introduction: In industrial production, a small amount of saffron T emissions will cause increase of water color and increase of chemical oxygen consumption, so study of the decolorization of saffron T wastewater has an important practical significance. Methods: MCM (Mobil Composition of Matter)-41 molecular sieve was synthesized by hydrothermal method. Power Xray diffraction and scanning electron microscopy were used to characterize the sample. Safranine T dye was adsorbed from water by the MCM-41 prepared. Kinetics and thermodynamics of the adsorption were studied. Results: The MCM-41 sample presented spherical particles and regular. The BET (Brunner-Emmett-Teller) specific surface area of the sample determined by 77 K low temperature nitrogen adsorption-desorption isotherm was 932 m2 /g. Its average particle diameter was 110 nm. TEM (transmission electron microscopy) results showed that the sample structure presented a honeycomb pore structure and the average pore diameter was 3.0 nm. The results showed that when room temperature was 20 ± 1 ℃, adsorbate safranine T: adsorbent MCM-41 = 20 : 1,the optimum pH value of adsorption was 4.0 and contact time was 20 min, the adsorption rate reached 98.29% and the adsorption capacity was 19.66 mg/g. The entropy change and enthalpy change of the adsorption system are respectively ΔS0 = 157.5 J/(mol·K); ΔH0 = 21.544 kJ/mol. When temperature was 277.15, 293.15, 303.15 K,the free energy change was respectively △G1 0 = -22.107 kJ/mol, △G2 0 = -24.627 kJ/mol, △G3 0 = -26.202 kJ/mol. Conclusion: The adsorption of safranine T by MCM-41 belongs to a pseudo-second-order adsorption. This adsorption accords with the Freundlich equation and belongs to a heterogeneous adsorption. The adsorption is an endothermic reaction of entropy increase, being spontaneous.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jian-Yu Li ◽  
Yan-Ting Chen ◽  
Meng-Zhu Shi ◽  
Jian-Wei Li ◽  
Rui-Bin Xu ◽  
...  

AbstractA detailed knowledge on the spatial distribution of pests is crucial for predicting population outbreaks or developing control strategies and sustainable management plans. The diamondback moth, Plutella xylostella, is one of the most destructive pests of cruciferous crops worldwide. Despite the abundant research on the species’s ecology, little is known about the spatio-temporal pattern of P. xylostella in an agricultural landscape. Therefore, in this study, the spatial distribution of P. xylostella was characterized to assess the effect of landscape elements in a fine-scale agricultural landscape by geostatistical analysis. The P. xylostella adults captured by pheromone-baited traps showed a seasonal pattern of population fluctuation from October 2015 to September 2017, with a marked peak in spring, suggesting that mild temperatures, 15–25 °C, are favorable for P. xylostella. Geostatistics (GS) correlograms fitted with spherical and Gaussian models showed an aggregated distribution in 21 of the 47 cases interpolation contour maps. This result highlighted that spatial distribution of P. xylostella was not limited to the Brassica vegetable field, but presence was the highest there. Nevertheless, population aggregations also showed a seasonal variation associated with the growing stage of host plants. GS model analysis showed higher abundances in cruciferous fields than in any other patches of the landscape, indicating a strong host plant dependency. We demonstrate that Brassica vegetables distribution and growth stage, have dominant impacts on the spatial distribution of P. xylostella in a fine-scale landscape. This work clarified the spatio-temporal dynamic and distribution patterns of P. xylostella in an agricultural landscape, and the distribution model developed by geostatistical analysis can provide a scientific basis for precise targeting and localized control of P. xylostella.


Sign in / Sign up

Export Citation Format

Share Document