Development of High-Efficiency Half-Ducted Propeller Fan for Air-Conditioners by Blade Tip Shape Modification
Abstract We developed a high-efficiency half-ducted propeller fan to reduce the electric power consumption of the outdoor unit of air conditioner by using computational fluid dynamics (CFD). Total pressure loss coefficient on the cylindrical surface of blade tip started increasing at the middle of the blade, and the region of high total pressure loss coefficient was formed after trailing edge. Therefore, we assumed that decreasing this region helped increasing static pressure efficiency. Limiting stream lines on the pressure surface showed that the flow from leading edge leaked at the middle of the blade tip, so it was assumed that the region of the high total pressure loss coefficient arose from the leakage at the middle of the blade tip. We confirmed that static pressure at the middle of blade tip, which was the leakage point, was low. We assumed that low inward force to the flow caused the leakage. On the other hand, static pressure at trailing edge of the blade tip was high. Therefore, it was found that the inward force could be increased by making the static pressure higher at the meddle of the blade tip. In order to make the static pressure higher at the middle of the blade tip, we attempted to move the maximum camber position of the blade tip from trailing edge side to leading edge side. Calculation results showed leakage at the blade tip decreased and the static pressure efficiency increased by 0.5%. Experimental results showed that the static pressure efficiency increased by 1.7 % and sound pressure level was almost the same. For the above reasons, we found leakage of flow from leading edge could be decreased by adjusting the maximum camber position of the blade tip. Decreasing leakage contributed to increasing static pressure efficiency and decreasing electric power consumption.