Numerical and Experimental Investigation on the Influence of Blades Gap Flow on Axial Blood Pump Performance

Author(s):  
Guangmao Liu ◽  
Donghai Jin ◽  
Mengyu Wang ◽  
Xingmin Gui

Abstract The axial blood pump body primarily contains the Inlet Guide Vane (IGV), Rotor Impeller (RI), Outlet Guide Vane (OGV) and pump casing. There must be gaps between rotor blade tip and pump casing or between OGV blade root and rotor hub for the impeller rotating in the pump. The flow characteristics inside an axial blood pump with different blade gaps were numerically simulated and analyzed. Hydraulics experiments were conducted to verify the numerical results. The results show that the pump efficiency decreased slowly when the OGV blade gap increased from 0.1 mm to 0.3 mm, but quickly when the rotor blade gap increased from 0.1 mm to 0.3 mm. The hydraulics characteristic results indicate that the pressure rise and efficiency are mainly influenced by the rotor blade gap. The OGV blade root gaps have little influence on the decrease of pressure rise and efficiency. The novel configuration with uneven blade gaps inside the pump result in improved hydraulics and hemolytic performance compared with the similarly sized configuration with even blade gaps.

Author(s):  
Theoklis Nikolaidis ◽  
Periclis Pilidis ◽  
J. A. Teixeira ◽  
V. Pachidis

A numerical approach was used to evaluate the liquid water film thickness and its motion on an axial flow compressor rotor blade under water ingestion conditions. By post-processing blading data and using computer programs to create the blades and their computational grid, the global computational domain of the first stage of an axial flow compressor was built. The flow field within the domain was solved by CFX-Tascflow, which is a commercial CFD code commonly used in turbomachinery. The computational domain consists of an extended inlet, an inlet guide vane, a rotor and a stator blade. Having solved the flow field at Design Point, the inlet guide vane blade was re-positioned to account for changes in idle speed. At that speed, the effects of water ingestion are expected to be more significant on gas turbine engine performance. Several cases with water ingestion were studied, changing parameters like water mass and compressor rotational speed. A FORTRAN computer program was created to calculate the water film height and speed. The extra torque needed by the compressor to keep running at the same rotational speed, was also calculated. The considerable increase in torque was confirmed by experimental observations according to which water ingestion had a detrimental effect on gas turbine operation.


2014 ◽  
Vol 527 ◽  
pp. 39-42 ◽  
Author(s):  
Ziad Bin Abdul Awal ◽  
Mohd Shariff bin Ammoo

The aerodynamics of the helicopter rotor is one of the most elating and exigent tribulations faced by the aerodynamicists today. Study through flow visualization process plays a key role in understanding the airflow distinctiveness and vortex interaction of the helicopter main rotor blade. Inspecting and scrutinizing the effects of wake vortices during operation is a great challenge and imperative in designing effective rotor system. This study aimed to visualize the main rotor airflow pattern of the Hirobo-FALCON 505 controllable subscale helicopter and seek for the vortex flow at the blade tip. The experimental qualitative data is correlated with quantitative data to perform scrupulous study on the airflow behavior and characteristics along with its distinctiveness spawned by the main rotor blade. Simulation using design software is performed in analogous stipulations to endow with comparability between the flow visualization results. Throughout the blade span several dissimilar flow patterns have been identified. The main rotor hub has turbulent flow at its center due to low energy of air amassed in this region whereas in the middle portion of the rotor blade, the air encompasses high kinetic energy with a clear straight streamline pattern.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Tobias Gezork ◽  
Paul Petrie-Repar

Abstract Resonant or close to resonant forced response excitation of compressor blades limits component life time and can potentially lead to high-cycle fatigue failure if the exciting forces are large and damping is insufficient. When numerically quantifying the forcing function by means of simulations, simplifications are typically made in the analysis to reduce complexity and computational cost. In this paper, we numerically investigate how the blade forcing function is influenced by the rotor tip gap flow and by flow across gaps in the upstream variable inlet guide vane row. Unsteady simulations are made using a test rig geometry where a forcing crossing with an excitation from a non-adjacent blade row had previously been measured. The effects of the gaps on the forcing function for the first torsion mode are presented for both the non-adjacent blade row excitation (changes compared with a case without gaps indicating a 20% reduction) and an adjacent excitation (changes indicating an 80% increase in terms of forcing function amplitude comparing with a case without gaps).


Author(s):  
Levi André B. Vigdal ◽  
Lars E. Bakken

The introduction of wet gas compression provides the opportunity for future cost-effective production of oil and gas. A wet gas compressor consists of a robust unit able to increase the pressure of untreated natural gas. This permits longer transport of hydrocarbons without topside facilities if installed at the well head. Obvious benefits include prolonging the life of existing wells and the possibility of exploiting smaller hydrocarbon sources otherwise considered non-commercial. Successful development of robust wet gas compressors requires further understanding of the phenomena which occur when liquid is present in the gas stream. Understanding the way the presence of liquid affects the velocity triangle and slip factor is essential for the design of wet gas compressors and for comprehending their response to varying levels of liquid content in the inlet stream. An experimental study has been performed with various levels of liquid fractions and inlet swirl angles. Impeller-exit velocity components and shift in slip factors are presented within the experimental test boundary. A shift in velocity components and slip factor is experienced with increasing liquid content and inlet guide vane (IGV) setting angle. Consequently, existing slip factor correlations not utilizing inlet flow characteristics are not valid for wet gas flow or with impeller inlet swirl.


1993 ◽  
Vol 115 (1) ◽  
pp. 197-206 ◽  
Author(s):  
S. R. Manwaring ◽  
S. Fleeter

A series of experiments is performed in an extensively instrumented axial flow research compressor to investigate the fundamental flow physics of wake-generated periodic rotor blade row unsteady aerodynamics at realistic values of the reduced frequency. Unique unsteady data are obtained that describe the fundamental unsteady aerodynamic gust interaction phenomena on the first-stage rotor blades of a research axial flow compressor generated by the wakes from the inlet guide vanes. In these experiments, the effects of steady blade aerodynamic loading and the aerodynamic forcing function, including both the transverse and chordwise gust components, and the amplitude of the gusts, are investigated and quantified.


Author(s):  
Harald Schoenenborn ◽  
Graham Ashcroft

The prediction of resonance amplitudes due to stator-rotor interactions is still an important task within the design process of turbomachinery bladings. In this paper the stator-rotor interaction of a compressor stage which consists of an inlet guide vane and a rotor blade is studied with a non-linear and a linearized CFD code. First, a quasi-3D-study of a section close to the tip region is considered. The passing of the wake of the inlet guide vane over the rotor is studied for six different vibration mode shapes of increasing complexity (first bending mode up to 4th chordwise bending mode). Whereas for low rotor speeds the comparison between linearized and non-linear calculations is quite good, large differences are found for high rotor speeds. It is shown that an acoustic interaction between the two stages with a cut-on mode is the cause for the large differences, leading to much higher unsteady pressure amplitudes on the rotor blade. This in turn leads to different aerodynamic work on the rotor blade for the different mode shapes. The extension of the investigations to 3D shows essentially the same effects.


1989 ◽  
Vol 111 (4) ◽  
pp. 434-441 ◽  
Author(s):  
F. E. McCaughan

Using Cornell’s supercomputing facilities, we have carried out an extensive study of the Moore–Greitzer model, which gives accurate and reliable information about compressor instability. The bifurcation analysis in the companion paper shows the dependence of the mode of compressor response on the shape of the rotating stall characteristic. The numerical results verify and extend this with a more accurate representation of the characteristic. The effect of the parameters on the shape of the rotating stall characteristic is investigated, and it is found that the parameters with the strongest effects are the inlet length, and the shape of the compressor pressure rise versus mass flow diagram (i.e., tall diagrams versus shallow diagrams). We also discuss the effects of inlet guide vane loss on the characteristic. An evaluation is made of the h′ = −g approximation, and a spectral analysis of the rotating stall cell given by the full model suggests why this breaks down.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
Francesco Soranna ◽  
Yi-Chih Chow ◽  
Oguz Uzol ◽  
Joseph Katz

This paper examines the response of a rotor blade boundary layer and a rotor near-wake to an impinging wake of an inlet guide vane (IGV) located upstream of the rotor blade. Two-dimensional particle image velocimetry (PIV) measurements are performed in a refractive index matched turbomachinery facility that provides unobstructed view of the entire flow field. Data obtained at several rotor phases enable us to examine the IGV-wake-induced changes to the structure of the boundary layer and how these changes affect the flow and turbulence within the rotor near-wake. We focus on the suction surface boundary layer, near the blade trailing edge, but analyze the evolution of both the pressure and suction sides of the near-wake. During the IGV-wake impingement, the boundary layer becomes significantly thinner, with lower momentum thickness and more stable profile compared with other phases at the same location. Analysis of available terms in the integral momentum equation indicates that the phase-averaged unsteady term is the main contributor to the decrease in momentum thickness within the impinging wake. Thinning of the boundary/shear layer extends into the rotor near-wake, making it narrower and increasing the phase-averaged shear velocity gradients and associated turbulent kinetic energy (TKE) production rate. Consequently, the TKE increases during wake thinning, with as much as 75% phase-dependent variations in its peak magnitude. This paper introduces a new way of looking at the PIV data by defining a wake-oriented coordinate system, which enables to study the structure of turbulence around the trailing edge in great detail.


2018 ◽  
Vol 5 (2) ◽  
pp. 5124-5130 ◽  
Author(s):  
Rajesh Sharma ◽  
Premkumar Manda ◽  
Satyapal Singh ◽  
A.K. Singh

Author(s):  
Andreas Fischer ◽  
Jörg König ◽  
Jürgen Czarske ◽  
Clemens Rakenius ◽  
Gregor Schmid ◽  
...  

The tip leakage flow in turbines is considered to be responsible/or significant machine losses. An efficient reduction of these losses by e. g. squealer cavities at rotor blade tips requires a detailed physical and quantitative understanding of the tip leakage flow. For this purpose, numerical flow simulations are a valuable tool, but they have to be validated by measurements. However, non-intrusive, optical flow measurements in a rotating machine are challenging due to the small tip gap dimensions. Using an optimized optical setup, all three velocity components of the tip gap flow field were resolved while the turbine (1.5 stage low Mach number turbine test rig) was running with 930Hz blade passing frequency at the design point. The measurement results are in good qualitative agreement with numerical flow simulations. The gap flow above the squealer cavity is not homogeneous, but has several flow gradients, which mainly result from the blade tip geometry and the continuity of the flow. Furthermore, the flow structure between two successive rotor blades was resolved yielding the size and shape of the tip leakage vortex downstream at the suction side of the rotor blade in the measurement plane. Consequently, the capabilities of the applied measurement approach opens promising perspectives toward the development of optimum blade tip designs with minimized tip leakage.


Sign in / Sign up

Export Citation Format

Share Document