Size-Dependent Model for Thin Film Thermal Conductivity

Author(s):  
Alan J. H. McGaughey ◽  
Daniel P. Sellan ◽  
Eric S. Landry ◽  
Cristina H. Amon

We present a closed-form classical model for the size dependence of thin film thermal conductivity. The model predictions are compared to Stillinger-Weber silicon thin film thermal conductivities (in-plane and cross-plane directions) calculated using phonon properties obtained from lattice dynamics calculations. By including the frequency dependence of the phonon-phonon relaxation times, the model is able to capture the approach to the bulk thermal conductivity better than models based on a single relaxation time.

2011 ◽  
Vol 99 (13) ◽  
pp. 131904 ◽  
Author(s):  
Alan J. H. McGaughey ◽  
Eric S. Landry ◽  
Daniel P. Sellan ◽  
Cristina H. Amon

2012 ◽  
Vol 2012.65 (0) ◽  
pp. 139-140
Author(s):  
Harutoshi HAGINO ◽  
Yosuke KAWAHARA ◽  
Aimi GOTO ◽  
Toru HIWADA ◽  
Koji Miyazaki

2013 ◽  
Vol 135 (9) ◽  
Author(s):  
Yaguo Wang ◽  
Bo Qiu ◽  
Alan J. H. McGaughey ◽  
Xiulin Ruan ◽  
Xianfan Xu

Thermal properties and transport control are important for many applications, for example, low thermal conductivity is desirable for thermoelectrics. Knowledge of mode-wise phonon properties is crucial to identify dominant phonon modes for thermal transport and to design effective phonon barriers for thermal transport control. In this paper, we adopt time-domain (TD) and frequency-domain (FD) normal-mode analyses to investigate mode-wise phonon properties and to calculate phonon dispersion relations and phonon relaxation times in bismuth telluride. Our simulation results agree with the previously reported data obtained from ultrafast time-resolved measurements. By combining frequency-dependent anharmonic phonon group velocities and lifetimes, mode-wise thermal conductivities are predicted to reveal the contributions of heat carriers with different wavelengths and polarizations.


Author(s):  
Cheng Shao ◽  
Hua Bao

The successful exfoliation of atomically-thin bismuth telluride quintuple layer (QL) attracts tremendous interest in investigating the electron and phonon transport properties in this quasi-two-dimensional material. While experimental results show that thermal conductivity is significantly reduced in Bi2Te3 QL compared to the bulk phase, the underlying mechanisms for the reduction is still unclear. Also in some measurements, the Bi2Te3 QL is usually supported on the substrate and the effect of the substrate on heat transfer in Bi2Te3 QL is unknown. In this work, we have performed molecular dynamics simulations and normal mode analysis to study the mode-wise phonon properties in freestanding and supported Bi2Te3 QL. We found that the existing of substrate will decrease the phonon relaxation times in Bi2Te3 QL in the full frequency range. Thermal conductivity accumulation function for both freestanding and supported Bi2Te3 QL are constructed and compared. We found that half of heat transfer in freestanding Bi2Te3 QL contributed from phonons with mean free paths larger than 16.5 nm, while in supported Bi2Te3 QL this value is reduced to 11 nm. In both cases phonons with MFPs in the range of 10–30 nm are the dominate heat carriers, which contribute to 55% and 53% of thermal conductivity in freestanding and supported cases.


2010 ◽  
Vol 2010.63 (0) ◽  
pp. 283-284
Author(s):  
Yoshihiko TSURU ◽  
Harutoshi HAGINO ◽  
Toru HIWADA ◽  
Koji MIYAZAKI

2019 ◽  
Vol 11 (37) ◽  
pp. 34394-34398 ◽  
Author(s):  
Xin Huang ◽  
Sergei Gluchko ◽  
Roman Anufriev ◽  
Sebastian Volz ◽  
Masahiro Nomura

Author(s):  
Haider Ali ◽  
Bekir S. Yilbas

AbstractPhonon transport across silicon thin film pair with minute gap (Casimir limit) between the films is studied. Phonon transport characteristics across the gap are examined for various gap sizes, and the transient solution of the frequency-dependent Boltzmann transport equation is presented according to relevant boundary conditions incorporating the gap between the film pair. Since the gap size is minute (Casimir limit), the radiative energy transport between the edges of the film pair is incorporated. In addition, phonon transmission and reflection is introduced at the gap edges, thus satisfying energy conservation. The thermal conductivity predicted is validated through experimental data reported in the open literature. Predicted thermal conductivity data agree well with the experimental data reported in the open literature. Increasing gap size alters the phonon transport characteristics across the film pair. Increasing gap size enhances temperature difference between the edges of the gap; in which case, the effect of phonon transmittance is more significant on the temperature difference than that corresponding to the radiation heat transfer due to Casimir limit.


2007 ◽  
Vol 48 (9) ◽  
pp. 2419-2421 ◽  
Author(s):  
Haitao Wang ◽  
Yibin Xu ◽  
Masato Shimono ◽  
Yoshihisa Tanaka ◽  
Masayoshi Yamazaki

2014 ◽  
Vol 1082 ◽  
pp. 459-462
Author(s):  
Hui Chen ◽  
Wei Yu Chen ◽  
Yun Fei Chen ◽  
Ke Dong Bi

The out-of-plane thermal conductivity of silicon thin film doped with germanium is calculated by non-equilibrium molecular dynamics simulation using the Stillinger-Weber potential model. The silicon thin film is doped with germanium atoms in a random doping pattern with a doping density of 5% and 50% respectively. The effect of silicon thin film thickness on its thermal conductivity is investigated. The simulated thicknesses of silicon thin film doped with germanium range from 2.2 to 10.9 nm at an average temperature 300K. The simulation results indicate that the out-of-plane thermal conductivity of the silicon thin film doped with germanium decreases linearly with the decreasing film thickness. As for the film thickness of 9.8nm and the average temperature ranging from 250 to 1000 K, the investigation shows that the temperature dependence of the film thermal conductivity is not sensitive.


Sign in / Sign up

Export Citation Format

Share Document