A Model for the Coupled Lift and Drag on a Circular Cylinder

Author(s):  
Ali H. Nayfeh ◽  
Farouk Owis ◽  
Muhammad R. Hajj

The time-varying coupled lift and drag coefficients acting on a circular cylinder are modeled. Data used for the model are obtained by numerically solving the unsteady Reynolds-Averaged Navier Stokes equations over a wide range of Reynolds numbers. Using spectral moments, we determine the frequency components in the lift and drag coefficients and their phase relations. Using a perturbation technique, we obtain approximate solutions of both the van der Pol and Rayleigh equations. By fitting the amplitude and phase relations, we find that the van der Pol equation is the suitable model for the lift. The Rayleigh equation fails to give the correct phase relation. Because the major frequency in the drag component is twice that of the lift, the drag component is modeled as a quadratic function of the lift. Through analysis with higher-order spectral moments, the correct quadratic relation of the lift that yields the drag is determined. The model and results presented here are a first step in the development of a reduced-order model for vortex-induced vibrations, which includes the motions of the cylinder.

2000 ◽  
Vol 407 ◽  
pp. 123-144 ◽  
Author(s):  
S. C. R. DENNIS ◽  
P. NGUYEN ◽  
SERPIL KOCABIYIK

The temporal development of two-dimensional viscous incompressible flow induced by an impulsively started circular cylinder which performs time-dependent rotational oscillations about its axis and translates at right angles to this axis is investigated. The investigation is based on the solutions of the unsteady Navier–Stokes equations. A series expansion for small times is developed. The Navier–Stokes equations are also integrated by a spectral–finite difference method for moderate values of time for both moderate and high Reynolds numbers. The numerical method is checked with the results of the analytical solution. The effects of the Reynolds number and of the forcing Strouhal number S on the laminar asymmetric flow structure in the near-wake region are studied. The lift and drag coefficients are also extracted from numerical results. An interesting phenomenon has been observed both in the flow patterns and in the behaviour of drag coefficients for S = π/2 at Reynolds number R = 500 and is discussed. For comparison purposes the start-up flow is determined numerically at a low Reynolds number and is found to be in good agreement with previous experimental predictions.


2000 ◽  
Vol 122 (4) ◽  
pp. 294-300 ◽  
Author(s):  
Karl W. Schulz ◽  
Yannis Kallinderis

A generalized numerical method for solution of the incompressible Navier-Stokes equations in three-dimensions has been developed. This solution methodology allows for the accurate prediction of the hydrodynamic loads on offshore structures, which is then combined with a rigid body structural response to address the flow-structure coupling which is often present in offshore applications. Validation results using this method are first presented for fixed structures which compare the drag coefficients of sphere and cylinder geometries to experimental measurements over a range of subcritical Reynolds numbers. Additional fixed structure results are then presented which explore the influence of aspect ratio effects on the lift and drag coefficients of a bare circular cylinder. Finally, the spanwise flow variations between a fixed and freely vibrating cylindrical structure are compared to demonstrate the ability of the flow-structure method to correctly predict correlation length increases for a vibrating structure. [S0892-7219(00)00904-3]


1970 ◽  
Vol 4 (1) ◽  
pp. 27-42 ◽  
Author(s):  
Md Mahbubar Rahman ◽  
Md. Mashud Karim ◽  
Md Abdul Alim

The dynamic characteristics of the pressure and velocity fields of unsteady incompressible laminar and turbulent wakes behind a circular cylinder are investigated numerically and analyzed physically. The governing equations, written in the velocity pressure formulation are solved using 2-D finite volume method. The initial mechanism for vortex shedding is demonstrated and unsteady body forces are evaluated. The turbulent flow for Re = 1000 & 3900 are simulated using k-? standard, k-? Realizable and k-? SST turbulence models. The capabilities of these turbulence models to compute lift and drag coefficients are also verified. The frequencies of the drag and lift oscillations obtained theoretically agree well with the experimental results. The pressure and drag coefficients for different Reynolds numbers were also computed and compared with experimental and other numerical results. Due to faster convergence, 2-D finite volume method is found very much prospective for turbulent flow as well as laminar flow.Keywords: Viscous unsteady flow, laminar & turbulent flow, finite volume method, circular cylinder.DOI: 10.3329/jname.v4i1.914Journal of Naval Architecture and Marine Engineering 4(2007) 27-42


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Seung-Jae Lee ◽  
Jun-Hyeok Lee ◽  
Jung-Chun Suh

The vorticity-velocity formulation of the Navier-Stokes equations allows purely kinematical problems to be decoupled from the pressure term, since the pressure is eliminated by applying the curl operator. The Vortex-In-Cell (VIC) method, which is based on the vorticity-velocity formulation, offers particle-mesh algorithms to numerically simulate flows past a solid body. The penalization method is used to enforce boundary conditions at a body surface with a decoupling between body boundaries and computational grids. Its main advantage is a highly efficient implementation for solid boundaries of arbitrary complexity on Cartesian grids. We present an efficient algorithm to numerically implement the vorticity-velocity-pressure formulation including a penalty term to simulate the pressure fields around a solid body. In vorticity-based methods, pressure field can be independently computed from the solution procedure for vorticity. This clearly simplifies the implementation and reduces the computational cost. Obtaining the pressure field at any fixed time represents the most challenging goal of this study. We validate the implementation by numerical simulations of an incompressible viscous flow around an impulsively started circular cylinder in a wide range of Reynolds numbers: Re=40, 550, 3000, and 9500.


1998 ◽  
Vol 120 (1) ◽  
pp. 72-75 ◽  
Author(s):  
V. N. Kurdyumov ◽  
E. Ferna´ndez

A correlation formula, Nu = W0(Re)Pr1/3 + W1(Re), that is valid in a wide range of Reynolds and Prandtl numbers has been developed based on the asymptotic expansion for Pr → ∞ for the forced heat convection from a circular cylinder. For large Prandtl numbers, the boundary layer theory for the energy equation is applied and compared with the numerical solutions of the full Navier Stokes equations for the flow field and energy equation. It is shown that the two-terms asymptotic approximation can be used to calculate the Nusselt number even for Prandtl numbers of order unity to a high degree of accuracy. The formulas for coefficients W0 and W1, are provided.


Author(s):  
Antoine Placzek ◽  
Jean-Franc¸ois Sigrist ◽  
Aziz Hamdouni

The numerical simulation of the flow past a circular cylinder forced to oscillate transversely to the incident stream is presented here for a fixed Reynolds number equal to 100. The 2D Navier-Stokes equations are solved with a classical Finite Volume Method with an industrial CFD code which has been coupled with a user subroutine to obtain an explicit staggered procedure providing the cylinder displacement. A preliminary work is conducted in order to check the computation of the wake characteristics for Reynolds numbers smaller than 150. The Strouhal frequency fS, the lift and drag coefficients CL and CD are thus controlled among other parameters. The simulations are then performed with forced oscillations f0 for different frequency rations F = f0/fS in [0.50–1.50] and an amplitude A varying between 0.25 and 1.25. The wake characteristics are analysed using the time series of the fluctuating aerodynamic coefficients and their FFT. The frequency content is then linked to the shape of the phase portrait and to the vortex shedding mode. By choosing interesting couples (A,F), different vortex shedding modes have been observed, which are similar to those of the Williamson-Roshko map.


1976 ◽  
Vol 78 (3) ◽  
pp. 561-576 ◽  
Author(s):  
A. Richter ◽  
E. Naudascher

The fluctuating lift and drag acting on a long, rigidly supported circular cylinder placed symmetrically in a narrow rectangular duct were investigated for various blockage percentages over a wide range of Reynolds numbers around the critical value. The data obtained permit a full assessment of the effect of confinement on the mean-drag coefficient, the root-mean-square values of both the drag and the lift fluctuations, the Strouhal number of the dominant vortex shedding, and the Reynolds number marking transition from laminar to turbulent flow separation. Besides experimental information on a subject on which little is known so far, the paper provides a basis for the deduction of better correction procedures concerning the effects of blockage.


1975 ◽  
Vol 97 (4) ◽  
pp. 453-462
Author(s):  
P. Leehey ◽  
T. S. Stellinger

Measurements were made of lift, drag, and moment coefficients, and cavity length for aspect ratio 3 and 5 supercavitating hydrofoils of elliptical planform. These measurements are compared with theoretical predictions obtained from matching asymptotic expansions for large aspect ratio. Good agreement was obtained for lift and drag coefficients for angles of attack from 10 deg to 15 deg and for a wide range of cavity lengths. Theoretical moment coefficients were too large indicating the need for lifting surface corrections.


Author(s):  
Lue Derek Du ◽  
Charles Dalton

In this paper, we study uniform flow past a rotary oscillating circular cylinder computationally. The objective is to determine the effect the oscillating rotation has on the lift and drag forces acting on the cylinder, on the wake structure, and on vortex shedding. A combination of finite-difference and spectral methods is used to calculate the three-dimensional incompressible unsteady Navier-Stokes equations in primitive variable form in nonorthogonal curvilinear coordinates. Wake turbulence is modeled by an LES technique. The Reynolds number considered is Re = 1.5×104, which is the same as that in the experimental study of Tokumaru & Dimotakis (1991), who suggested this technique as a means of reducing drag. We fix the forcing amplitude at the moderate value of Ω = 2 and vary the forcing frequency in a wide range to study its effect on the flow. The resonance phenomenon and drag reduction effect are carefully examined. The wake structure and vortex shedding process is visualized by means of computational streaklines. These results have a practical application in offshore engineering.


Author(s):  
Osama Marzouk ◽  
Ali H. Nayfeh ◽  
Imran Akhtar ◽  
Haider N. Arafat

Numerical simulations of flow past a stationary circular cylinder at different Reynolds numbers have been performed using a computational fluid dynamics (CFD) solver that is based on the Reynolds-averaged Navier-Stokes equations (RANS). The results obtained are used to develop reduced-order models for the lift and drag coefficients. The models do not only match the numerical simulation results in the time domain, but also in the spectral domain. They capture the steady-state region with excellent accuracy. Further, the models are verified by comparing their results in the transient region with their counterparts from the CFD simulations and a very good agreement is found. The work performed here is a step towards building models for vortex-induced vibrations (VIV) encountered in offshore structures, such as risers and spars.


Sign in / Sign up

Export Citation Format

Share Document