Integrated Multi-Body Dynamic and Cam-Tappet Contact Analysis for a Single Cylinder IC Engine

Author(s):  
M. Teodorescu ◽  
M. Kushwaha ◽  
H. Rahnejat ◽  
S. Rothberg

The paper investigates the valve train system of a 4-stroke single cylinder engine. An integrated approach for the dynamics and tribological behavior of the mechanism, as well as cam-tappet contact characteristics is described. The proposed model predicts the cam-tappet contact sub-surface stress field as well as contact deflection. Experimental validation is provided for the dynamic model with a motored test rig, using Laser Doppler vibrometry (LDV). The model can be used in the design stage or for design evaluation.

2013 ◽  
Vol 823 ◽  
pp. 251-256
Author(s):  
Xiao Zhen Qu ◽  
Hao Liu ◽  
Hui He

This paper proposes a simple mechanical CVVA mechanism using a four-bar linkage, a rotating 1st cam and two oscillating 2nd cams in addition to the conventional overhead camshaft valve train system. The fundamental operating principle of the CVVA mechanism is described. A multi-body dynamic model of the CVVA mechanism of single cylinder in ADAMS is developed according to the kinematic design and topological structure of the mechanism. Valve motions and compressive loads of the mechanism are analyzed through the various lift phases and camshaft rotating speeds. The results of the dynamic simulation demonstrate that the CVVA mechanism sustains proper performance in the valve timing and event control through the whole speed range.


2019 ◽  
Vol 287 ◽  
pp. 03005
Author(s):  
Jan Furch ◽  
Cao Vu Tran

The combat vehicle gearbox, during the operation, generates vibration signals being related to the technical condition of gearbox. The analysis of the vibration signal could be used to determine accurately the behaviour of gearbox. Along with the development of the computer technology, the multi-body dynamic solution has been used widely to simulate, analyse, and determine the technical condition of gearbox. The purpose of this paper is to introduce the dynamic model of combat vehicle gearbox, and the simulation process based on the multi-body dynamic software, namely MSC.ADAMS. This proposed model allows the detection of failure conditions of individual gears and bearings in the gearbox. In this way, the fault conditions of the individual transmission components are identified. In the future, we would like to include a material wear module in the model, and we would like to model the life of the gearbox. We assume that we would also carry out accelerated tests of the gearbox to verify validity.


Author(s):  
Li Feng ◽  
Zhuang Jihui ◽  
Xiaoming Cheng ◽  
Qianwen Wang ◽  
Changping Chen ◽  
...  

Author(s):  
Mehdi Mehrgou

Today, due to technical, commercial and environmental requirements, internal combustion engines especially heavy duty diesel engines must operate with high cylinder pressures and the components must be optimized for the best performance. Heavy duty diesel engines usually rotate the driven machinery with a large inertia such as generators, or ship propeller. A crankshaft is subjected to periodic dynamic loads; also other inconsistencies could make misfire in engine and because of the torsional vibration in engine, the crankshaft has fluctuating instantaneous speed. Due to the essence of this type of the engine which has heavy parts, beside the robust design of them, and relatively high torques which need to rotate the camshaft, these engines valvetrain normally drive with gears. In consequence the rotating speed of engine crankshaft completely transfer to the camshaft because of high amount of crank train’s inertia in comparison with the valve train and in some cases using the damper for camshaft is required. Modern calculation methods allow for the precise determination of system dynamic and loads. Thus, it is possible to consider design margins that ensure sufficient reliability to avoid undesired dynamic behavior which could lead to structural failures, besides avoiding the components over sizing. In this paper ADAMS\Engine commercial software has been used for simulating the coupled engine cranktrain and valve train subsystems of an engine under development. The engine complete dynamic simulation with Multi-Body Dynamic tool including backlash in gear train and torsionally flexible camshaft, prepare a good model for study the effect of engine cranktrain dynamics on its valvetrain.


10.14311/248 ◽  
2001 ◽  
Vol 41 (4-5) ◽  
Author(s):  
J. Pohl ◽  
A. Warell ◽  
P. Krus ◽  
J.-O. Palmberg

Variable valve train systems have been brought into focus during recent years as a means to decrease fuel consumption in tomorrow's combustion engines. In this paper an integrated approach, called simulation driven experiments, is utilised in order to aid the development of such highly dynamic systems. Through the use of systematic design methodology, a number of feasible concepts are developed. Critical components are subsequently identified using simulation. In this approach, component behaviour is simulated and validated by measurements on prototype components. These models are unified with complete system models of hydraulically actuated valve trains. In the case of the valve trains systems studied here component models could be validated using comparably simple test set-ups. These models enable the determination of non-critical design parameters in an optimal sense. This results in a number of optimised concepts facilitating an impartial functional concept selection.


2011 ◽  
Vol 308-310 ◽  
pp. 307-310
Author(s):  
Xiao Mei You ◽  
Lei Meng ◽  
Xing Guo Ma ◽  
Bang Chun Wen

Based on the multi-body dynamics theory and visualization technology, a planetary gear train system is studied in RecurDyn. The multi-body dynamics model of the 2K-H planetary gear train system is built to do the visual analysis on dynamic characteristic of the planetary gear system severally in the ideal steady-state condition and the random-load condition, than the real-time dynamic contact stress and some other meaningful results of the key components are gained. Compared the related simulation results with that of the theoretical analysis, it is known that two kinds of results are consistent and the simulation analysis on the planetary gear train system is correct and accuracy. From the research above, the new idea and analytical tool are provided for the traditional, static, "redundancy" design method of the gear system, and also the effective technical mean is provided in conceptual design of complex mechanical products to predict the performance, then to reduce the "birth defects" in design stage and also an effective and efficient technical means for engineering applications is offered for optimal design and developing new product on gear train system.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6328
Author(s):  
Bo Hu ◽  
Yunzhe Li ◽  
Lairong Yin

The valve train is one of the main sources of engine vibration, and its dynamic performance is crucial for output power and fuel consumption. The flexibilities of slender bars and beams should be emphasised in the design of valve trains to develop high-power and high-speed engines with industrial applications. A flexible dynamic model of a valve train system is proposed. In the proposed model, the components, except the cam and gear bodies, are modelled as flexible bodies with multidirectional deformations. The gyroscopic effects of the camshaft, cams and gear discs are also considered to predict dynamic responses at high speeds accurately. Gear meshing, the friction of the cam–tappet pair, the centrifugal force of the cams and valve clearance are also considered. Experiments on housing vibration and pushrod stress are conducted to validate the proposed model. Results show that the proposed model can predict the dynamic stress of the flexible components well and predict the trend shown by the housing vibration. The proposed model shows that excessive cam rotation speed and valve clearance will cause intense bounce and jump phenomena. The proposed model can be an important reference for designing engine work speed, adjusting valve clearance and improving component durability.


2017 ◽  
Vol 63 (7-8) ◽  
pp. 466
Author(s):  
Seok Hong Park ◽  
Duc Viet Dang ◽  
Trung Thanh Nguyen

Predicting machine tool performance at the design stage is one way to resolve the time issue and achieve cost savings. The objective of this paper was to develop a new non-hydraulic broaching machine using a servo motor, ball screw, and roll element linear guide using virtual prototyping technology. First, we developed a multi-body simulation model (MBS) of a servo-based broaching machine to investigate its dynamic behaviour. Then, an adaptive sliding mode proportional-integral-derivative (PID)-based controller (ASMPID) was proposed to conduct the broaching process. We then performed a co-simulation between the mechanical structure and virtual controller to investigate the ram body trajectory and identify the optimal control parameters. Finally, we manufactured a prototype machine to evaluate the simulation results and determine the benefits of the new system. Our results indicated that the proposed model, which includes a mechanical structure and intelligent controller, effectively improved broaching machine design. Therefore, this work is expected to improve the prototyping efficiency of new broaching machines.


Sign in / Sign up

Export Citation Format

Share Document