Motion-Based Shape Deformation of Solid Models

Author(s):  
Nier Wu ◽  
Horea T. Ilies¸

Mechanical designs undergo numerous geometric changes throughout the design process. Performing these changes relies, whenever possible, on the parametric models used to create the initial geometry. However, a number of open issues prevent the current parametric modeling systems to support many practical design situations, which, in turn, forces the geometry to evolve independently of the original parametric model. The fact that every parametric update can be expressed in terms of a sequence of shape deformations implies that the same geometric updates could be obtained, at least in principle, via shape deformation procedures that parameterize the deformation itself. In this paper we propose a new approach to create and edit solid models by introducing a geometric deformation procedure that relies on motion interpolation. We show that the proposed approach induces a parametrization of the deformation that allows direct control and editing of the deformation, is capable of preserving important geometric invariants such as constant cross-sectional properties of the deformed models, and maintains the ability to perform parametric optimization of the associated solid models. We conclude by discussing advantages and limitations of this approach as well as a number of important research directions that we will pursue in the near future.

Author(s):  
Horea T. Ilies¸

Parametric modeling systems are fundamentally changing the design process practiced in the industry today. Practically all commercial CAD systems combine established solid modeling techniques with constraint solving and heuristic algorithms to create, edit and manipulate solid models, while enforcing the requirement that every such solid model must maintain the validity of the prescribed geometric constraints. However, a number of fundamental (open) problems limit the functionality and performance of these parametric modeling systems. For example, the allowable parametric changes are history dependent; the number of parameters describing even relatively simple parts can quickly become prohibitively large, and commercial constraint solvers are limited today to 2-dimensional geometric constraints. Consequently, current parametric modeling systems do not support many practical design situations due to the associated theoretical and computational difficulties, as well as to the considerable organizational obstacles generated by the need to handle large parametric models. This paper investigates the current practices and limitations of parametric solid modeling systems, and explores some alternative approaches that could complement the identified limitations.


2021 ◽  
Vol 13 (1) ◽  
pp. 401
Author(s):  
Woong Bee Choi ◽  
Dongyeol Lee ◽  
Woo Chang Kim

The Korean National Pension Service (NPS) is a partially funded and defined-benefit system. Although the accumulated Fund of the NPS has been increased gradually, this large fund is concerned about depletion in the near future due to the unprecedented aging population and the low fertility rate. In this study, we have developed an asset-liability management (ALM) model that endogenizes variables which were regarded as being exogenous by including them in investable assets. We present the multistage stochastic programming (MSP) formulation incorporating the population structure as a variable that is new to ALM. The optimal portfolio encompassing the investment in raising the fertility rate is obtained. Extending the scope of ALM to social investment is a new approach that has not been attempted in other ALM studies. We demonstrate that socially driven investments can also be a good investment asset in which the NPS should consider to invest.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 685
Author(s):  
Manuel Prado-Velasco ◽  
Rafael Ortiz-Marín

The emergence of computer-aided design (CAD) has propelled the evolution of the sheet metal engineering field. Sheet metal design software tools include parameters associated to the part’s forming process during the pattern drawing calculation. Current methods avoid the calculation of a first pattern drawing of the flattened part’s neutral surface, independent of the forming process, leading to several methodological limitations. The study evaluates the reliability of the Computer Extended Descriptive Geometry (CeDG) approach to surpass those limitations. Three study cases that cover a significative range of sheet metal systems are defined and the associated solid models and patterns’ drawings are computed through Geogebra-based CeDG and two selected CAD tools (Solid Edge 2020, LogiTRACE v14), with the aim of comparing their reliability and accuracy. Our results pointed to several methodological lacks in LogiTRACE and Solid Edge that prevented to solve properly several study cases. In opposition, the novel CeDG approach for the computer parametric modeling of 3D geometric systems overcame those limitations so that all models could be built and flattened with accuracy and without methodological limitations. As additional conclusion, the success of CeDG suggests the necessity to recover the relevance of descriptive geometry as a key core in graphic engineering.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Xin Wan ◽  
Ximing Liu ◽  
Jichen Miao ◽  
Peng Cong ◽  
Yuai Zhang ◽  
...  

Pebble dynamics is important for the safe operation of pebble-bed high temperature gas-cooled reactors and is a complicated problem of great concern. To investigate it more authentically, a computed tomography pebble flow detecting (CT-PFD) system has been constructed, in which a three-dimensional model is simulated according to the ratio of 1 : 5 with the core of HTR-PM. A multislice helical CT is utilized to acquire the reconstructed cross-sectional images of simulated pebbles, among which special tracer pebbles are designed to indicate pebble flow. Tracer pebbles can be recognized from many other background pebbles because of their heavy kernels that can be resolved in CT images. The detecting principle and design parameters of the system were demonstrated by a verification experiment on an existing CT system in this paper. Algorithms to automatically locate the three-dimensional coordinates of tracer pebbles and to rebuild the trajectory of each tracer pebble were presented and verified. The proposed pebble-detecting and tracking technique described in this paper will be implemented in the near future.


Author(s):  
Mohsen Rezayat

Abstract An integral part of implementing parallel product and process designs is simulation through numerical analysis. This simulation-driven design requires discretization of the 3D part in an appropriate manner. If the part is thin or has thin sections (e.g., plastic parts), then an analysis model with reduced dimensionality may be more accurate and economical than a standard 3D model. In addition, substantial simplification of some details in the design geometry may be beneficial and desirable in the analysis model. Unfortunately, the majority of CAD systems do not provide the means for abstraction of appropriate analysis models. In this paper we present a new approach, based on midsurface abstraction, which holds significant promise in simplifying simulation-driven design. The method is user-friendly because very little interaction is required to guide the software in its automatic creation of the desired analysis model. It is also robust because it handles typical parts with complex and interacting features. Application of the method for feature recognition and abstraction is also briefly discussed.


2021 ◽  
Author(s):  
Xinyi Xiao ◽  
Byeong-Min Roh

Abstract The integration of Topology optimization (TO) and Generative Design (GD) with additive manufacturing (AM) is becoming advent methods to lightweight parts while maintaining performance under the same loading conditions. However, these models from TO or GD are not in a form that they can be easily edited in a 3D CAD modeling system. These geometries are generally in a form with no surface/plane information, thus having non-editable features. Direct fabricate these non-feature-based designs and their inherent characteristics would lead to non-desired part qualities in terms of shape, GD&T, and mechanical properties. Current commercial software always requires a significant amount of manual work by experienced CAD users to generate a feature-based CAD model from non-feature-based designs for AM and performance simulation. This paper presents fully automated shaping algorithms for building parametric feature-based 3D models from non-feature-based designs for AM. Starting from automatically decomposing the given geometry into “formable” volumes, which is defined as a sweeping feature in the CAD modeling system, each decomposed volume will be described with 2D profiles and sweeping directions for modeling. The Boolean of modeled components will be the final parametric shape. The volumetric difference between the final parametric form and the original geometry is also provided to prove the effectiveness and efficiency of this automatic shaping methodology. Besides, the performance of the parametric models is being simulated to testify the functionality.


2013 ◽  
Vol 13 (03) ◽  
pp. 1350022 ◽  
Author(s):  
YUNUS ZIYA ARSLAN ◽  
AZIM JINHA ◽  
MOTOSHI KAYA ◽  
WALTER HERZOG

In this study, we introduced a novel cost function for the prediction of individual muscle forces for a one degree-of-freedom musculoskeletal system. Unlike previous models, the new approach incorporates the instantaneous contractile conditions represented by the force-length and force-velocity relationships and accounts for physiological properties such as fiber type distribution and physiological cross-sectional area (PCSA) in the cost function. Using this cost function, it is possible to predict experimentally observed features of force-sharing among synergistic muscles that cannot be predicted using the classical approaches. Specifically, the new approach allows for predictions of force-sharing loops of agonistic muscles in one degree-of-freedom systems and for simultaneous increases in force in one muscle and decreases in a corresponding agonist. We concluded that the incorporation of the contractile conditions in the weighting of cost functions provides a natural way to incorporate observed force-sharing features in synergistic muscles that have eluded satisfactory description.


1980 ◽  
Vol 102 (3) ◽  
pp. 247-251 ◽  
Author(s):  
M. H. Friedman ◽  
C. B. Bargeron ◽  
G. M. Hutchins ◽  
F. F. Mark ◽  
O. J. Deters

A new approach is presented for studying the vascular response to hemodynamic stress. A laser doppler anemometer is used to make velocity measurements very near the walls of human arterial casts; these measurements are then correlated with the histology of the artery from which the cast was made. Several illustrative results are given which suggest that the velocity profiles along the outer walls of aortic bifurcations may be significantly determined by the longitudinal variation of cross-sectional area. The shapes of these profiles were qualitatively different for each cast studied. In one specimen, the location of initial lipid deposits appeared to correlate with flow acceleration.


Author(s):  
Pedro Miguel Rodrigues ◽  
João Paulo Teixeira ◽  
Diamantino R. S. Freitas

Alzheimer's disease is the most common cause of dementia which causes a progressive and irreversible impairment of several cognitive functions. The aging population has been increasing significantly in recent decades and this disease affects mainly the elderly. Its diagnostic accuracy is relatively low and there is not a biomarker able to detect AD without invasive tests. Despite the progress in better understanding the disease there remains no prospect of cure at least in the near future. The electroencephalogram (EEG) test is a widely available technology in clinical settings. It may help diagnosis of brain disorders, once it can be used in patients who have cognitive impairment involving a general decrease in overall brain function or in patients with a located deficit. This study is a new approach to improve the scalp localization and the detection of brain anomalies (EEG temporal events) sources associated with AD by using the EEG.


Sign in / Sign up

Export Citation Format

Share Document