scholarly journals Technology-Oriented Optimization of the Secondary Design Parameters of Robots for High-Speed Machining Applications

Author(s):  
Se´bastien Briot ◽  
Anatol Pashkevich ◽  
Damien Chablat

In this paper, a new methodology for the optimal design of the secondary geometric parameters (shape of links, size of the platform, etc.) of parallel kinematic machine tools is proposed. This approach aims at minimizing the total mass of the robot under position accuracy constraints. This methodology is applied to two translational parallel robots with three degrees-of-freedom (DOF): the Y-STAR and the UraneSX. The proposed approach is able to speed up the design process and to help the designer to find more quickly a set of design parameters.

2010 ◽  
Vol 4 (4) ◽  
pp. 326-337 ◽  
Author(s):  
Takaaki Oiwa ◽  

The parallel kinematic mechanism has been applied to simulators and robots for its high speed or multiple degrees of freedom. In recent years, however, it has begun to be used for precision mechanisms, such as machine tools, measuring machines, or fine-motion mechanisms. This review outlines the parallel kinematic mechanism and compares it with the conventional orthogonal coordinate mechanism to describe its nature and characteristics as a precision mechanism. It also introduces some cases in which the parallel kinematic mechanism is applied to fine motion mechanisms and three-dimensional coordinate measuring machines in addition to machine tools and robots. Finally, it discusses the problems and future of this parallel kinematic mechanism.


Robotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 132
Author(s):  
Paolo Righettini ◽  
Roberto Strada ◽  
Filippo Cortinovis

Several industrial robotic applications that require high speed or high stiffness-to-inertia ratios use parallel kinematic robots. In the cases where the critical point of the application is the speed, the compliance of the main mechanical transmissions placed between the actuators and the parallel kinematic structure can be significantly higher than that of the parallel kinematic structure itself. This paper deals with this kind of system, where the overall performance depends on the maximum speed and on the dynamic behavior. Our research proposes a new approach for the investigation of the modes of vibration of the end-effector placed on the robot structure for a system where the transmission’s compliance is not negligible in relation to the flexibility of the parallel kinematic structure. The approach considers the kinematic and dynamic coupling due to the parallel kinematic structure, the system’s mass distribution and the transmission’s stiffness. In the literature, several papers deal with the dynamic vibration analysis of parallel robots. Some of these also consider the transmissions between the motors and the actuated joints. However, these works mainly deal with the modal analysis of the robot’s mechanical structure or the displacement analysis of the transmission’s effects on the positioning error of the end-effector. The discussion of the proposed approach takes into consideration a linear delta robot. The results show that the system’s natural frequencies and the directions of the end-effector’s modal displacements strongly depend on its position in the working space.


2010 ◽  
Vol 166-167 ◽  
pp. 457-462
Author(s):  
Dan Verdes ◽  
Radu Balan ◽  
Máthé Koppány

Parallel robots find many applications in human-systems interaction, medical robots, rehabilitation, exoskeletons, to name a few. These applications are characterized by many imperatives, with robust precision and dynamic workspace computation as the two ultimate ones. This paper presents kinematic analysis, workspace, design and control to 3 degrees of freedom (DOF) parallel robots. Parallel robots have received considerable attention from both researchers and manufacturers over the past years because of their potential for high stiffness, low inertia and high speed capability. Therefore, the 3 DOF translation parallel robots provide high potential and good prospects for their practical implementation in human-systems interaction.


Author(s):  
J. A. Carretero ◽  
R. P. Podhorodeski ◽  
M. Nahon

Abstract This paper presents a study of the architecture optimization of a three-degree-of-freedom parallel mechanism intended for use as a telescope mirror focussing device. The construction of the mechanism is first described. Since the mechanism has only three degrees of freedom, constraint equations describing the inter-relationship between the six Cartesian coordinates are given. These constraints allow us to define the parasitic motions and, if incorporated into the kinematics model, a constrained Jacobian matrix can be obtained. This Jacobian matrix is then used to define a dexterity measure. The parasitic motions and dexterity are then used as objective functions for the optimizations routines and from which the optimal architectural design parameters are obtained.


Robotica ◽  
2009 ◽  
Vol 28 (6) ◽  
pp. 909-917 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Horacio Orozco-Mendoza ◽  
José M. Rico-Martínez

SUMMARYIn this work a new nonoverconstrained redundant decoupled robot, free of compound joints, formed from three parallel manipulators, with two moving platforms and provided with six active limbs connected to the fixed platform, called LinceJJP, is presented. Interesting applications such as multi-axis machine tools with parallel kinematic architectures, solar panels, radar antennas, and telescopes are available for this novel spatial mechanism.


2018 ◽  
Vol 10 (4) ◽  
Author(s):  
Xin-Jun Liu ◽  
Gang Han ◽  
Fugui Xie ◽  
Qizhi Meng ◽  
Sai Zhang

Driving system parameters optimization, especially the optimal selection of specifications of motor and gearbox, is very important for improving high-speed parallel robots' performance. A very challenging issue is parallel robots' performance evaluation that should be able to illustrate robots' performance accurately and guide driving system parameters optimization effectively. However, this issue is complicated by parallel robots' anisotropic translational and rotational dynamic performance, and the multiparameters of motors and gearboxes. In this paper, by separating the influence of translational and rotational degrees-of-freedom (DOFs) on robots' performance, a new dynamic performance index is proposed to reflect the driving torque in instantaneous acceleration. Then, the influence of driving system's multiparameters on robots' driving torque in instantaneous acceleration and cycle time in continuous motion is investigated. Based on the investigation, an inertia matching index is further derived which is more suitable for minimizing the driving torque of parallel robots with translational and rotational DOFs. A comprehensive parameterized performance atlas is finally established. Based on this atlas, the performance of a high-speed parallel robot developed in this paper can be clearly evaluated, and the optimal combination of motors and gearboxes can be quickly selected to ensure low driving torque and high pick-and-place frequency.


Author(s):  
Varan Gupta ◽  
Rohit Patel ◽  
Jitendra P. Khatait ◽  
I. N. Kar

Quick locomotion has always been a challenge for humanoid robots. Most of the work has been done to improve the efficiency of the walking gaits. Recently, additional equipment like skates are increasingly being used to speed up location, but they also make the system highly unstable. This paper describes the development of a statically stable skating gait to facilitate movement across plain surfaces, such as roads and hard ice. The new gait utilises the non-holonomic nature of a wheel (or blade of an ice skate). The proposed motion of the skates on the ground plane enables it to propel the robot forward without lifting its leg. Kinematic and dynamic equations of an equivalent model are formulated. Further, the paper discusses the relationship between different input signals and their corresponding output gaits. Multibody dynamics software is then used to simulate and verify the results for various scenarios. The design of an equivalent model with three degrees of freedom is then analysed and discussed for practical testing. Finally, the algorithm was tested on a fabricated robot.


Author(s):  
Mustafa Özdemir

Planar two-legged parallel robots with three degrees of freedom have been suggested in the literature as a solution to reduce the leg interference problem of their conventional three-legged counterparts, and since then have attracted considerable attention. This paper presents a singularity analysis of these robots. Three alternatives, namely the robots with 2-RRR, 2-RPR, and 2-PRR structures are considered. Type I, II, and III singularity conditions are obtained taking into account all possible actuation schemes. Several singularity-free actuation schemes are enumerated and discussed. The performed analysis also shows that adjustable designs are possible for manipulators with 2-PRR structures to have singularity-free operation. The proposed design concept and its effectiveness are illustrated through numerical examples.


2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Sheng Xiang ◽  
Haibo Gao ◽  
Zhen Liu ◽  
Clément Gosselin

Abstract This paper proposes a dynamic point-to-point trajectory planning technique for three degrees-of-freedom (DOFs) cable-suspended parallel robots. The proposed technique is capable of generating feasible multiple-swing trajectories that reach points beyond the footprint of the robot. Tree search algorithms are used to automatically determine a sequence of intermediate points to enhance the versatility of the planning technique. To increase the efficiency of the tree search, a one-swing motion primitive and a steering motion primitive are designed based on the dynamic model of the robot. Closed-form expressions for the motion primitives are given, and a corresponding rapid feasibility check process is proposed. An energy-based metric is used to estimate the distance in the Cartesian space between two points of a dynamic point-to-point task, and this system’s specific distance metric speeds up the coverage. The proposed technique is evaluated using a series of Monte Carlo runs, and comparative statistics results are given. Several example trajectories are presented to illustrate the approach. The results are compared with those obtained with the existing state-of-the-art methods, and the proposed technique is shown to be more general compared to previous analytical planning techniques while generating smoother trajectories than traditional rapidly exploring randomized tree (RRT) methods.


Author(s):  
Martin Kipfmu¨ller ◽  
Christian Munzinger

Today’s machine tool industry mainly consists of small and medium-sized enterprises. Thus, the simulation of new products often does not seem to be cost effective due to the small number of items produced and the high cost of simulation tools. Nevertheless, the use of simulation tools is essential in order to tap the full potential of new challenging concepts like parallel kinematic machines. This paper presents a simulation method supporting the development process of parallel kinematic machine tools from the first concept to the prototype. In order to render the method applicable for the machine tool industry, a special focus is placed on tool efficiency. A modular modeling concept will ensure that the structure of the first kinematic model of the concept phase can be enhanced during the development process and developed into more detailed models, e.g. for dimensioning calculations or to study the dynamic behavior of machine tools. Thus, the method efficiently supports the whole development process with a simulation model gradually increasing in detail according to the requirements of the machine tool designer.


Sign in / Sign up

Export Citation Format

Share Document