Micro Injection Moulding Process and Product Characterization

Author(s):  
Rossella Surace ◽  
Gianluca Trotta ◽  
Alessandro Bongiorno ◽  
Vincenzo Bellantone ◽  
Claudia Pagano ◽  
...  

Due to its high efficiency for the large scale production of polymeric parts, micro injection moulding is one of the key technologies of the new millennium. Although a lot of researches have been conducted to identify the most effective processing conditions for micro injection moulding, the comprehension of the influence of all parameters on the quality, the properties and the reliability of the moulded parts is still an issue. In this context, this study aims to evaluate the effects of the micro injection moulding process conditions on the tensile properties of micro parts, investigating the influence of three main process parameters: the injection speed, the mould temperature and the melt temperature. A full factorial plan has been applied to study the contributions of these parameters and a second study has been performed to understand the synergic interaction between the two temperatures on the tensile strength. Due to its high level of potential crystallinity, a typical semi-crystalline thermoplastic resin was used in the experiments. The results of the analysis showed a great influence of the mould temperature (Tmould) on the ultimate tensile strength and of the melt temperature (Tmelt) on the deformation at the point of breaking; whereas the injection speed was significant on the overall mechanical performance. A new studied factor (Tmelt-Tmould) could affect the resulting molecular structure and consequently the mechanical behaviour, but itself is not sufficient to thoroughly explain the observed behaviour. Moreover, the visual inspection of the deformation mechanism at break shows three distinctive trends demonstrating the great variability of the mechanical properties of micro-injected specimens due to process conditions.

Author(s):  
T Nguyen-Chung ◽  
C Löser ◽  
G Jüttner ◽  
T Pham ◽  
M Obadal ◽  
...  

The software package Moldflow Plastics Insights was used to simulate the filling of a micro-cavity by considering precise material data and accurate boundary conditions. Experiments were carried out on an accurately controlled micro-injection moulding machine (formicaPlast) for providing important parameters to verify the simulation results and improve the accuracy of the simulation. Based on the relationship between the cavity pressure and the mould-filling ratio, the heat transfer coefficients can be appropriately determined for different process conditions. Finally, the transient thermo-rheological results were analysed with regard to their influence on the morphology of semi-crystalline (PP) micro-injection moulded parts, which not only give rise to the mechanisms of the morphological formation but also verify the quality of the simulation results.


Author(s):  
Rossella Surace ◽  
Vincenzo Bellantone ◽  
Irene Fassi

This paper reports on fabrication and characterization of a micro-filter for hearing aid, dialysis media and inhaler. The micro-feature specifications consist in a diameter of 2.3 mm, a thickness of 0.2 mm and it is composed by a mesh with grid of 80 μm and ribs with width of 70 μm. The proposed micro-filter is fabricated by micro injection moulding process adopting a steel mould manufactured by micro Electrical Discharge Machining process (micro EDM). Different polymeric materials (POM, HDPE, LCP), particularly indicated for the injection moulding applications due to their flowability and stability, are tested and evaluated in relation to the process replication capability. Since the polymer micro-filter is made of a complex grid of micro-ribs, the injection moulding process must ensure complete filling of the micro-parts, preventing any defects (i.e. premature solidification, incomplete filling, flash and air traps). To this aim, different system parameters configurations (melt and mould temperature, injection velocity, holding time and pressure, cooling time, pressure limit) are tested for obtaining acceptable part in all polymers grade. Finally, the component is dimensionally characterized by confocal microscopy and its filtration capacity is then verified. Although the feature complexity was high, the results showed that the object could be successfully replicated by filling completely the micro cavities with two of them: POM and HDPE. The most significant parameters influencing the part filling were the mould temperature and the injection velocity. These findings allow to further optimize the micro-injection process parameters to obtain a high quality product.


Author(s):  
C. A. Griffiths ◽  
S. S. Dimov ◽  
S. G. Scholz ◽  
G. Tosello ◽  
A. Rees

The paper reports an experimental study that investigates part demoulding behavior in micro-injection moulding with a focus on the effects of pressure and temperature on the demoulding forces. In particular, the demoulding performance of a representative microfluidics part was studied as a function of four process parameters, melt temperature, mould temperature, holding pressure, and injection speed, employing the design of experiment approach. In addition, the results obtained using different combinations of process parameters were analyzed to identify the best processing conditions in regards to demoulding behavior of microparts when utilizing a COC polymer to mould them.


2015 ◽  
Vol 761 ◽  
pp. 8-11 ◽  
Author(s):  
Mohd Amran ◽  
Siti Salmah ◽  
Raja Izamshah ◽  
Mohd Shahir ◽  
Mohd Amri ◽  
...  

Warpage deflection is one of the common pitfalls in plastic injection moulding which is always affected the quality and accuracy of the plastic products. It occurs due to the influences of mould temperature during injection moulding process and it is related to the number of cooling system existed in the mould. Therefore, this paper studies the effect of cooling channels on warpage of dumbbell plastic part having different number of cooling channel using Moldflow software. Warpage analysis was run using four and eight cooling channels. Parameters involved in this study are injection time, packing time, melt temperature and mould temperature. The result of warpage from simulation analysis was projected on the graphic having different colour which is presented the actual value of warpage. It is found from warpage simulation result that the maximum warpage for four cooling channels is 1.283mm and the maximum warpage for eight cooling channels is 1.280mm. It shows that the increasing of the number of cooling channel from four to eight channels in the injection mould reduces the warpage deflection about 0.2%. Thus, the result shows that the number of cooling system in the mould plays an important role on the quality of plastic part during injection moulding process.


2014 ◽  
Vol 699 ◽  
pp. 20-25 ◽  
Author(s):  
Mohd Amran ◽  
Siti Salmah ◽  
Abdul Faiz ◽  
Raja Izamshah ◽  
Mohd Hadzley ◽  
...  

The application of Taguchi method to reduce warpage in an injection moulding process is studied. The objective of this paper is to analyze the effect of injection moulding parameters, i.e., injection time, packing time, melt temperature and mould temperature, on the warpage defect in dumbbell plastics part. Optical comparator horizontal type was used to measure the difference of warpage value on each part. L9 orthogonal array with 3 replications was done with 27 totals of specimens. The result collected was optimized using Taguchi method and percentage of contribution was calculated using analysis of variance (ANOVA). According to the analysis, it is found that the significant factors affected warpage are injection time (32.01%), packing time (29.73%), mould temperature (24.39%) and melt temperature (13.87%). The optimum parameters for minimizing the warpage were injection time (1s), packing time (5s), melt temperature (270 °C) and the mould temperature (21 °C). By using Taguchi method and ANOVA analysis, optimum parameters and the percentage of contribution of parameters can be obtained. Thus, it shows that design of experiment method is the good quality tools to get the best quality for production.


2019 ◽  
Vol 809 ◽  
pp. 140-147 ◽  
Author(s):  
Maike Böttcher ◽  
Daisy Nestler ◽  
Jonas Stiller ◽  
Lothar Kroll

Ceramic materials are suitable for use in the high temperature range. Oxide ceramics, in particular, have a high potential for long-term applications under thermal cycling and oxidising atmosphere. However, monolithic oxide ceramics are unsuitable for use in high-temperature technical applications because of their brittleness. Thin-walled, oxidation resistant, and high-temperature resistant materials can be developed by reinforcing oxide ceramics with ceramic fibres such as alumina fibres. The increase of the mechanical stability of the composites in comparison to the non-fibre reinforced material is of outstanding importance. Possible stresses or cracks can be derived along the fibre under mechanical stress or deformation. Components made of fibre-reinforced ceramic composites with oxide ceramic matrix (OCMC) are currently produced in manual and price-intensive processes for small series. Therefore, the manufacturing should be improved. The ceramic injection moulding (CIM) process is established in the production of monolithic oxide ceramics. This process is characterised by its excellent automation capability. In order to realise large scale production, the CIM-process should be transferred to the production of fibre-reinforced oxide ceramics. The CIM-process enables the production of complicated component shapes and contours without the need for complex mechanical post-treatment. This means that components with complex geometries can be manufactured in large quantities.To investigate the suitability of the injection moulding process for the production of OCMCs, two different feedstocks and alumina fibres (Nextel 610) were compounded in a laboratory-scale compounder. The fibre volume fractions were varied. In a laboratory-scale injection moulding device, microbending specimens were produced from the compounds obtained in this way. To characterise the test specimens, microstructure examinations and mechanical-static tests were done. It is shown that the injection moulding process is suitable for the production of fibre-reinforced oxide ceramics. The investigations show that the feedstocks used have potential for further research work and for future applications as material components for high-temperature applications in oxidising atmospheres.


2013 ◽  
Vol 748 ◽  
pp. 544-548 ◽  
Author(s):  
Nik Mizamzul Mehat ◽  
Shahrul Kamaruddin ◽  
Abdul Rahim Othman

This paper presents the original development of an experimental approach in studying the multiple tensile characterizations as key quality characteristics for several different plastic gear materials related to various parameters in injection moulding process. In this study, emphases are given on a new low-cost mechanism for the testing of the injection moulded plastic spur gear specimens with various teeth module. The testing fixture are developed and validated to provide uniform state of tension with series of plastic gear specimens produced in accordance with the systematically designed of experiment. The effects of changes in the process parameters including melt temperature, packing pressure, packing time and cooling time at three different levels on the elongation at break and ultimate strength of plastic gear is evaluated and studied through the proposed experimental approach.


2016 ◽  
Vol 36 (6) ◽  
pp. 597-605 ◽  
Author(s):  
Ariane Jungmeier

Abstract Injection moulding is a widespread large-scale production technology for the manufacturing of thermoplastic parts, with small wall thicknesses limiting the feasible flow length. Introducing microthermoforming into the injection moulding process with dynamic mould temperature control enables the production of film-based, plane microstructured parts with further three-dimensional functional structures (e.g. for handling or for fitting in devices/assembly groups). Investigations show that considerable forming is possible with pressures up to 140 bar and forming temperatures far below the glass transition temperature of 50-μm-thick polycarbonate films in cycle times of <3 min. Generally speaking, the novel technology is expected to allow for multifunctional, thin-walled microstructured parts at large scales with short cycle times.


Sign in / Sign up

Export Citation Format

Share Document