Effect of Injection Moulding Machine Parameters on the Warpage by Applying Taguchi Method

2014 ◽  
Vol 699 ◽  
pp. 20-25 ◽  
Author(s):  
Mohd Amran ◽  
Siti Salmah ◽  
Abdul Faiz ◽  
Raja Izamshah ◽  
Mohd Hadzley ◽  
...  

The application of Taguchi method to reduce warpage in an injection moulding process is studied. The objective of this paper is to analyze the effect of injection moulding parameters, i.e., injection time, packing time, melt temperature and mould temperature, on the warpage defect in dumbbell plastics part. Optical comparator horizontal type was used to measure the difference of warpage value on each part. L9 orthogonal array with 3 replications was done with 27 totals of specimens. The result collected was optimized using Taguchi method and percentage of contribution was calculated using analysis of variance (ANOVA). According to the analysis, it is found that the significant factors affected warpage are injection time (32.01%), packing time (29.73%), mould temperature (24.39%) and melt temperature (13.87%). The optimum parameters for minimizing the warpage were injection time (1s), packing time (5s), melt temperature (270 °C) and the mould temperature (21 °C). By using Taguchi method and ANOVA analysis, optimum parameters and the percentage of contribution of parameters can be obtained. Thus, it shows that design of experiment method is the good quality tools to get the best quality for production.

2015 ◽  
Vol 761 ◽  
pp. 8-11 ◽  
Author(s):  
Mohd Amran ◽  
Siti Salmah ◽  
Raja Izamshah ◽  
Mohd Shahir ◽  
Mohd Amri ◽  
...  

Warpage deflection is one of the common pitfalls in plastic injection moulding which is always affected the quality and accuracy of the plastic products. It occurs due to the influences of mould temperature during injection moulding process and it is related to the number of cooling system existed in the mould. Therefore, this paper studies the effect of cooling channels on warpage of dumbbell plastic part having different number of cooling channel using Moldflow software. Warpage analysis was run using four and eight cooling channels. Parameters involved in this study are injection time, packing time, melt temperature and mould temperature. The result of warpage from simulation analysis was projected on the graphic having different colour which is presented the actual value of warpage. It is found from warpage simulation result that the maximum warpage for four cooling channels is 1.283mm and the maximum warpage for eight cooling channels is 1.280mm. It shows that the increasing of the number of cooling channel from four to eight channels in the injection mould reduces the warpage deflection about 0.2%. Thus, the result shows that the number of cooling system in the mould plays an important role on the quality of plastic part during injection moulding process.


Author(s):  
Rossella Surace ◽  
Gianluca Trotta ◽  
Alessandro Bongiorno ◽  
Vincenzo Bellantone ◽  
Claudia Pagano ◽  
...  

Due to its high efficiency for the large scale production of polymeric parts, micro injection moulding is one of the key technologies of the new millennium. Although a lot of researches have been conducted to identify the most effective processing conditions for micro injection moulding, the comprehension of the influence of all parameters on the quality, the properties and the reliability of the moulded parts is still an issue. In this context, this study aims to evaluate the effects of the micro injection moulding process conditions on the tensile properties of micro parts, investigating the influence of three main process parameters: the injection speed, the mould temperature and the melt temperature. A full factorial plan has been applied to study the contributions of these parameters and a second study has been performed to understand the synergic interaction between the two temperatures on the tensile strength. Due to its high level of potential crystallinity, a typical semi-crystalline thermoplastic resin was used in the experiments. The results of the analysis showed a great influence of the mould temperature (Tmould) on the ultimate tensile strength and of the melt temperature (Tmelt) on the deformation at the point of breaking; whereas the injection speed was significant on the overall mechanical performance. A new studied factor (Tmelt-Tmould) could affect the resulting molecular structure and consequently the mechanical behaviour, but itself is not sufficient to thoroughly explain the observed behaviour. Moreover, the visual inspection of the deformation mechanism at break shows three distinctive trends demonstrating the great variability of the mechanical properties of micro-injected specimens due to process conditions.


2017 ◽  
Vol 25 (6) ◽  
pp. 453-462 ◽  
Author(s):  
Wolfgang Wildner ◽  
Dietmar Drummer

In this paper, the optical and mechanical properties of injection-moulded plates (thickness: 1 mm) made of poly(methyl methacrylate) (PMMA) and glass particles as filler with a matching refractive index are investigated. Tests show that the orientation resulting from the injection moulding process greatly affects the tensile strength and elongation at break, whereas the elastic modulus merely depends on the filling degree, which is investigated up to 13 vol.%. In terms of the optical properties, the specimens’ haze depends on the difference in the refractive index between a glass and polymer. However, the absolute value of haze increases with increasing filling degree and decreasing particle size. Surface defects resulting from the injection moulding process were found to be the primary reason for this haze, even with identical RI between PMMA and glass.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 14 ◽  
Author(s):  
Mohd Amran Md Ali ◽  
Noorfa Idayu ◽  
Raja Izamshah ◽  
Mohd Shahir Kasim ◽  
Mohd Shukor Salleh ◽  
...  

This study presents an optimization of injection moulding parameters on mechanical properties of plastic part using Taguchi method and Grey Relational Analysis (GRA) approach. The orthogonal array with L9 was used as the experimental design. Grey relational analysis for ultimate tensile strength, modulus and percentage of elongation from the Taguchi method can convert optimization of the multiple performance characteristics into optimization of a single performance characteristic called the grey relational grade (GRG). It is found that mould temperature of 62oC, melt temperature of 280oC, injection time of 0.70s and cooling time 15.4s are found as the optimum process setting. Furthermore, ANOVA result shows that the cooling time is the most influenced factor that affects the mechanical properties of plastic part followed by mould temperature and melt temperature.  


2013 ◽  
Vol 748 ◽  
pp. 544-548 ◽  
Author(s):  
Nik Mizamzul Mehat ◽  
Shahrul Kamaruddin ◽  
Abdul Rahim Othman

This paper presents the original development of an experimental approach in studying the multiple tensile characterizations as key quality characteristics for several different plastic gear materials related to various parameters in injection moulding process. In this study, emphases are given on a new low-cost mechanism for the testing of the injection moulded plastic spur gear specimens with various teeth module. The testing fixture are developed and validated to provide uniform state of tension with series of plastic gear specimens produced in accordance with the systematically designed of experiment. The effects of changes in the process parameters including melt temperature, packing pressure, packing time and cooling time at three different levels on the elongation at break and ultimate strength of plastic gear is evaluated and studied through the proposed experimental approach.


2019 ◽  
Vol 969 ◽  
pp. 775-780
Author(s):  
Rajendra Khavekar ◽  
Hari Vasudevan ◽  
Gosar Vimal

In this Paper, the application of Taguchi Method (TM) on the process parameters of Injection Moulding of Polybutylene Terephthalate (PBT) is presented. The influence of process parameters, such as Injection Pressure, Suckback Pressure, Injection Time, Cooling Time, Zone 1 Temperature & Zone 2 Temperature (Barrel Temperatures) on Dark Spots and Short Shots (defects) were investigated using the Orthogonal Array L16 of Taguchi Method for 6 factors at 2 levels each with the response being percent defectives. It was found that Injection Pressure, Injection Time & Zone 1 Temperature had a major effect on the response. After the application of Taguchi Method, the rejection rate dropped down to 5.84% from 11.33%, which is a 48.45% reduction.


Author(s):  
Rossella Surace ◽  
Vincenzo Bellantone ◽  
Irene Fassi

This paper reports on fabrication and characterization of a micro-filter for hearing aid, dialysis media and inhaler. The micro-feature specifications consist in a diameter of 2.3 mm, a thickness of 0.2 mm and it is composed by a mesh with grid of 80 μm and ribs with width of 70 μm. The proposed micro-filter is fabricated by micro injection moulding process adopting a steel mould manufactured by micro Electrical Discharge Machining process (micro EDM). Different polymeric materials (POM, HDPE, LCP), particularly indicated for the injection moulding applications due to their flowability and stability, are tested and evaluated in relation to the process replication capability. Since the polymer micro-filter is made of a complex grid of micro-ribs, the injection moulding process must ensure complete filling of the micro-parts, preventing any defects (i.e. premature solidification, incomplete filling, flash and air traps). To this aim, different system parameters configurations (melt and mould temperature, injection velocity, holding time and pressure, cooling time, pressure limit) are tested for obtaining acceptable part in all polymers grade. Finally, the component is dimensionally characterized by confocal microscopy and its filtration capacity is then verified. Although the feature complexity was high, the results showed that the object could be successfully replicated by filling completely the micro cavities with two of them: POM and HDPE. The most significant parameters influencing the part filling were the mould temperature and the injection velocity. These findings allow to further optimize the micro-injection process parameters to obtain a high quality product.


2022 ◽  
Vol 58 (4) ◽  
pp. 102-113
Author(s):  
Sukran Katmer ◽  
Cetin Karatas

The shape memory effect, as the most important ability of shape memory polymers, is a working property and provides the design ability to shape memory polymer features. Shrinkage and warpage are important parameters to control the dimensional accuracy of permanent and temporary shapes of an injection moulded shape memory polyurethane (SMPU) part. In this study, the effects of injection moulding parameters on the shrinkage and warpage of the permanent shape of moulded SMPU parts were experimentally investigated. The parameters of injection pressure, melt temperature, mould temperature, packing pressure, packing time, and cooling time, were chosen as the injection moulding control factors. Taguchi�s L27 orthogonal array design table was used with six injection moulding parameters and their three levels. The results showed that the part has different shrinkage ratios in three main directions, namely, the flow direction, perpendicular to the flow direction, and the direction through the thickness. The results of the analysis of variance showed that the cooling time is the most influential parameter on both the shrinkage (except in thickness) and warpage. The shrinkage in the flow direction as well as in perpendicular to the flow direction decreased with increasing the cooling time. Warpage also decreased with increasing the cooling time. Injection pressure and melt temperature were found to be effective on shrinkage in thickness. Effects of mould temperature, packing pressure, and packing time were found to be limited. A statistically significant relationship has been noticed among shrinkage, warpage, and residual stresses during the study.


Sign in / Sign up

Export Citation Format

Share Document