Warpage Analysis of Different Number Cooling Channels for Dumbbell Plastic Part in Injection Moulding

2015 ◽  
Vol 761 ◽  
pp. 8-11 ◽  
Author(s):  
Mohd Amran ◽  
Siti Salmah ◽  
Raja Izamshah ◽  
Mohd Shahir ◽  
Mohd Amri ◽  
...  

Warpage deflection is one of the common pitfalls in plastic injection moulding which is always affected the quality and accuracy of the plastic products. It occurs due to the influences of mould temperature during injection moulding process and it is related to the number of cooling system existed in the mould. Therefore, this paper studies the effect of cooling channels on warpage of dumbbell plastic part having different number of cooling channel using Moldflow software. Warpage analysis was run using four and eight cooling channels. Parameters involved in this study are injection time, packing time, melt temperature and mould temperature. The result of warpage from simulation analysis was projected on the graphic having different colour which is presented the actual value of warpage. It is found from warpage simulation result that the maximum warpage for four cooling channels is 1.283mm and the maximum warpage for eight cooling channels is 1.280mm. It shows that the increasing of the number of cooling channel from four to eight channels in the injection mould reduces the warpage deflection about 0.2%. Thus, the result shows that the number of cooling system in the mould plays an important role on the quality of plastic part during injection moulding process.

2011 ◽  
Vol 264-265 ◽  
pp. 433-438 ◽  
Author(s):  
Abul B.M. Saifullah ◽  
Syed H. Masood

In an injection moulded part, warpage is the distortion caused by non-uniform shrinkage within the plastic part. When looking critically at the causes of warpage, it is found that several key parameters of the moulding process have some effect on the warpage. However, the two major categories that contribute to warpage include the part design and the mould design. In mould design, the gate location, runner/gate system and cooling system design are the major factors affecting not only the warpage and part quality but also the injection moulding cycle time. This paper presents an investigation of using different cooling system configuration on warpage and shrinkage of an industrial plastic part with the aim of determining which cooling configuration will provide minimum warpage and cycle time. As conventional injection mould cooling design is based on straight drilling, it limits the geometric complexity of the cooling design, especially curved shape cooling channels. Nowadays, new technology of advanced rapid tooling based on solid freeform fabrications can be been used to provide conformal cooling channels in injection moulds. In this paper, several type of cooling channels are analysed to compare the performance in terms of warpage and shrinkage and to determine which configuration is suitable for minimizing warpage. Autodesk Moldflow Insight (AMI) simulation software is applied to examine the results of the cooling performances and warpage analysis.


Author(s):  
Rossella Surace ◽  
Gianluca Trotta ◽  
Alessandro Bongiorno ◽  
Vincenzo Bellantone ◽  
Claudia Pagano ◽  
...  

Due to its high efficiency for the large scale production of polymeric parts, micro injection moulding is one of the key technologies of the new millennium. Although a lot of researches have been conducted to identify the most effective processing conditions for micro injection moulding, the comprehension of the influence of all parameters on the quality, the properties and the reliability of the moulded parts is still an issue. In this context, this study aims to evaluate the effects of the micro injection moulding process conditions on the tensile properties of micro parts, investigating the influence of three main process parameters: the injection speed, the mould temperature and the melt temperature. A full factorial plan has been applied to study the contributions of these parameters and a second study has been performed to understand the synergic interaction between the two temperatures on the tensile strength. Due to its high level of potential crystallinity, a typical semi-crystalline thermoplastic resin was used in the experiments. The results of the analysis showed a great influence of the mould temperature (Tmould) on the ultimate tensile strength and of the melt temperature (Tmelt) on the deformation at the point of breaking; whereas the injection speed was significant on the overall mechanical performance. A new studied factor (Tmelt-Tmould) could affect the resulting molecular structure and consequently the mechanical behaviour, but itself is not sufficient to thoroughly explain the observed behaviour. Moreover, the visual inspection of the deformation mechanism at break shows three distinctive trends demonstrating the great variability of the mechanical properties of micro-injected specimens due to process conditions.


2014 ◽  
Vol 699 ◽  
pp. 20-25 ◽  
Author(s):  
Mohd Amran ◽  
Siti Salmah ◽  
Abdul Faiz ◽  
Raja Izamshah ◽  
Mohd Hadzley ◽  
...  

The application of Taguchi method to reduce warpage in an injection moulding process is studied. The objective of this paper is to analyze the effect of injection moulding parameters, i.e., injection time, packing time, melt temperature and mould temperature, on the warpage defect in dumbbell plastics part. Optical comparator horizontal type was used to measure the difference of warpage value on each part. L9 orthogonal array with 3 replications was done with 27 totals of specimens. The result collected was optimized using Taguchi method and percentage of contribution was calculated using analysis of variance (ANOVA). According to the analysis, it is found that the significant factors affected warpage are injection time (32.01%), packing time (29.73%), mould temperature (24.39%) and melt temperature (13.87%). The optimum parameters for minimizing the warpage were injection time (1s), packing time (5s), melt temperature (270 °C) and the mould temperature (21 °C). By using Taguchi method and ANOVA analysis, optimum parameters and the percentage of contribution of parameters can be obtained. Thus, it shows that design of experiment method is the good quality tools to get the best quality for production.


2018 ◽  
Vol 7 (3.7) ◽  
pp. 14 ◽  
Author(s):  
Mohd Amran Md Ali ◽  
Noorfa Idayu ◽  
Raja Izamshah ◽  
Mohd Shahir Kasim ◽  
Mohd Shukor Salleh ◽  
...  

This study presents an optimization of injection moulding parameters on mechanical properties of plastic part using Taguchi method and Grey Relational Analysis (GRA) approach. The orthogonal array with L9 was used as the experimental design. Grey relational analysis for ultimate tensile strength, modulus and percentage of elongation from the Taguchi method can convert optimization of the multiple performance characteristics into optimization of a single performance characteristic called the grey relational grade (GRG). It is found that mould temperature of 62oC, melt temperature of 280oC, injection time of 0.70s and cooling time 15.4s are found as the optimum process setting. Furthermore, ANOVA result shows that the cooling time is the most influenced factor that affects the mechanical properties of plastic part followed by mould temperature and melt temperature.  


2013 ◽  
Vol 748 ◽  
pp. 544-548 ◽  
Author(s):  
Nik Mizamzul Mehat ◽  
Shahrul Kamaruddin ◽  
Abdul Rahim Othman

This paper presents the original development of an experimental approach in studying the multiple tensile characterizations as key quality characteristics for several different plastic gear materials related to various parameters in injection moulding process. In this study, emphases are given on a new low-cost mechanism for the testing of the injection moulded plastic spur gear specimens with various teeth module. The testing fixture are developed and validated to provide uniform state of tension with series of plastic gear specimens produced in accordance with the systematically designed of experiment. The effects of changes in the process parameters including melt temperature, packing pressure, packing time and cooling time at three different levels on the elongation at break and ultimate strength of plastic gear is evaluated and studied through the proposed experimental approach.


Author(s):  
Rossella Surace ◽  
Vincenzo Bellantone ◽  
Irene Fassi

This paper reports on fabrication and characterization of a micro-filter for hearing aid, dialysis media and inhaler. The micro-feature specifications consist in a diameter of 2.3 mm, a thickness of 0.2 mm and it is composed by a mesh with grid of 80 μm and ribs with width of 70 μm. The proposed micro-filter is fabricated by micro injection moulding process adopting a steel mould manufactured by micro Electrical Discharge Machining process (micro EDM). Different polymeric materials (POM, HDPE, LCP), particularly indicated for the injection moulding applications due to their flowability and stability, are tested and evaluated in relation to the process replication capability. Since the polymer micro-filter is made of a complex grid of micro-ribs, the injection moulding process must ensure complete filling of the micro-parts, preventing any defects (i.e. premature solidification, incomplete filling, flash and air traps). To this aim, different system parameters configurations (melt and mould temperature, injection velocity, holding time and pressure, cooling time, pressure limit) are tested for obtaining acceptable part in all polymers grade. Finally, the component is dimensionally characterized by confocal microscopy and its filtration capacity is then verified. Although the feature complexity was high, the results showed that the object could be successfully replicated by filling completely the micro cavities with two of them: POM and HDPE. The most significant parameters influencing the part filling were the mould temperature and the injection velocity. These findings allow to further optimize the micro-injection process parameters to obtain a high quality product.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6303
Author(s):  
Tiago Pinho ◽  
Tatiana Zhiltsova ◽  
Mónica Oliveira ◽  
Andreia Costa

The work reported here intends to identify and mitigate the causes for failure in a plastic faucet holder, a part of an integral float faucet with a well-documented history of fracture occurrence. A methodology for the identification of hidden internal defects in plastic parts and the elaboration of the required corrective actions towards quality improvement is, therefore, presented. Firstly, part defects were identified via injection moulding process numerical simulation. The latter has enabled the prediction of an excessive volumetric shrinkage at the core of the faucet holder, highlighting the presence of internal voids and, hence, the possible deterioration of the load-bearing capacity. The supposition was later confirmed by X-ray topography scans. Part reengineering, consisting of localized thickness reduction, was the option chosen for decreasing the high shrinkage at the core. For validation purposes, structural analyses were carried out, with and without accounting for the injection moulding processing history. The results obtained during part structural analysis have enabled us to conclude that, when taking into account the residual stresses generated during injection moulding, the analysis more closely reflects the experimental data and allows us to implicitly envisage the propensity to fracture. Moreover, the part modifications, undertaken during the faucet holder reengineering, led to the reduction of the cumulative (processing and imposed by load) stresses by 50%, when compared to the original design analysed.


2013 ◽  
Vol 798-799 ◽  
pp. 286-289
Author(s):  
Wei Li

This thesis first made an introduction to the functional and technical requirements of this product, and then determined its moulding process. After that, the injection moulding process parameters of the selected injection moulding machine were set, besides, it applied Moldflow software to make simulation analysis to multiple schemes of injection moulding process, and finally, the best mold structure was determined according to the final analysis result.


Sign in / Sign up

Export Citation Format

Share Document