Fault Feature Extraction for Rolling Bearing Based on Dual Impulse Morlet Wavelet

Author(s):  
Yi Feng ◽  
Bao-chun Lu ◽  
Deng-feng Zhang ◽  
Wei Zhang

The common impulse feature model is oscillating and attenuated signal with a single maximum peak, while the formation principle of actual impulse feature is ignored. Considering the continuous dual impulse waveform feature of rolling bearing fault in the vibration signal and the matching effects of the single impulse waveform with Morlet wavelet, a “dual impulse Morlet wavelet” model is proposed. Through ant colony algorithm with the indicator of the maximum cross-correlation, 4 types of parameters are optimized adaptively which affect the similar degree between dual impulse Morlet wavelet and the dual impulse waveform intercepted from the bearing vibration signal. Then, the optimal model is obtained. The bearing fault experiment verification shows that the optimal dual impulse Morlet wavelet can effectively improve the analytical precision and energy concentration of impulse feature in both of time domain and frequency domain, which overcomes the disadvantages of Morlet wavelet effectively.

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Te Han ◽  
Dongxiang Jiang ◽  
Nanfei Wang

Nowadays, the fault diagnosis of rolling bearing in aeroengines is based on the vibration signal measured on casing, instead of bearing block. However, the vibration signal of the bearing is often covered by a series of complex components caused by other structures (rotor, gears). Therefore, when bearings cause failure, it is still not certain that the fault feature can be extracted from the vibration signal on casing. In order to solve this problem, a novel fault feature extraction method for rolling bearing based on empirical mode decomposition (EMD) and the difference spectrum of singular value is proposed in this paper. Firstly, the vibration signal is decomposed by EMD. Next, the difference spectrum of singular value method is applied. The study finds that each peak on the difference spectrum corresponds to each component in the original signal. According to the peaks on the difference spectrum, the component signal of the bearing fault can be reconstructed. To validate the proposed method, the bearing fault data collected on the casing are analyzed. The results indicate that the proposed rolling bearing diagnosis method can accurately extract the fault feature that is submerged in other component signals and noise.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1946 ◽  
Author(s):  
Jiakai Ding ◽  
Liangpei Huang ◽  
Dongming Xiao ◽  
Xuejun Li

The vibration signal of an early rolling bearing is nonstationary and nonlinear, and the fault signal is weak and difficult to extract. To address this problem, this paper proposes a genetic mutation particle swarm optimization variational mode decomposition (GMPSO-VMD) algorithm and applies it to rolling bearing vibration signal fault feature extraction. Firstly, the minimum envelope entropy is used as the objective function of the GMPSO to find the optimal parameter combination of the VMD algorithm. Then, the optimized VMD algorithm is used to decompose the vibration signal of the rolling bearing and several intrinsic mode functions (IMFs) are obtained. The envelope spectrum analysis of GMPSO-VMD decomposed rolling bearing fault signal IMF1 was carried out. Moreover, the feature frequency of the four fault states of the rolling bearing are extracted accurately. Finally, the GMPSO-VMD algorithm is utilized to analyze the simulation signal and rolling bearing fault vibration signal. The effectiveness of the GMPSO-VMD algorithm is verified by comparing it with the fixed parameter VMD (FP-VMD) algorithm, complete ensemble empirical mode decomposition adaptive noise (CEEMDAN) algorithm and empirical mode decomposition (EMD) algorithm.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun He ◽  
Xiang Li ◽  
Yong Chen ◽  
Danfeng Chen ◽  
Jing Guo ◽  
...  

In mechanical fault diagnosis, it is impossible to collect massive labeled samples with the same distribution in real industry. Transfer learning, a promising method, is usually used to address the critical problem. However, as the number of samples increases, the interdomain distribution discrepancy measurement of the existing method has a higher computational complexity, which may make the generalization ability of the method worse. To solve the problem, we propose a deep transfer learning method based on 1D-CNN for rolling bearing fault diagnosis. First, 1-dimension convolutional neural network (1D-CNN), as the basic framework, is used to extract features from vibration signal. The CORrelation ALignment (CORAL) is employed to minimize marginal distribution discrepancy between the source domain and target domain. Then, the cross-entropy loss function and Adam optimizer are used to minimize the classification errors and the second-order statistics of feature distance between the source domain and target domain, respectively. Finally, based on the bearing datasets of Case Western Reserve University and Jiangnan University, seven transfer fault diagnosis comparison experiments are carried out. The results show that our method has better performance.


Author(s):  
Juanjuan Shi ◽  
Ming Liang

Vibration analysis has been extensively used as an effective tool for bearing condition monitoring. The vibration signal collected from a defective bearing is, however, a mixture of several signal components including the fault feature (i.e. fault-induced impulses), periodic interferences from other mechanical/electrical components, and background noise. The incipient impulses which excite as well as modulate the resonance frequency of the system are easily masked by compounded effects of periodic interferences and noise, making it challenging to do a reliable fault diagnosis. As such, this paper proposes an envelope demodulation method termed short time fractal dimension (STFD) transform for fault feature extraction from such vibration signal mixture. STFD transform calculation related issues are first addressed. Then, by STFD, the original signal can be quickly transformed into a STFD representation, where the envelope of fault-induced impulses becomes more pronounced whereas interferences are partly weakened due to their morphological appearance differences. It has been found that the lower the interference frequency, the less effect the interference has on STFD representations. When interference frequency keeps increasing, more effects on STFD representations will be resulted. Such effects can be reduced by the proposed kurtosis-based peak search algorithm (KPSA). Therefore, bearing fault signature is kept and interferences are further weakened in the STFD-KPSA representation. The proposed method has been favourably compared with two widely used enveloping methods, i.e. multi-morphological analysis and energy operator, in terms of extracting impulse envelopes from vibration signals obscured by multiple interferences. Its performance has also been examined using both simulated and experimental data.


2013 ◽  
Vol 753-755 ◽  
pp. 2290-2296 ◽  
Author(s):  
Wen Tao Huang ◽  
Yin Feng Liu ◽  
Pei Lu Niu ◽  
Wei Jie Wang

In the early fault diagnosis of rolling bearing, the vibration signal is mixed with a lot of noise, resulting in the difficulties in analysis of early weak fault signal. This article introduces resonance-based signal sparse decomposition (RSSD) into rolling bearing fault diagnosis, and studies the fault information contained in high resonance component and low resonance component. This article compares the effect of the two resonance components to extract rolling bearing fault information in four aspects: the amount of fault information, frequency resolution of subbands, sensitivity to noise and immunity to autocorrelation processing. We find that the high resonance component has greater advantage in extraction of rolling bearing fault information, and it is able to indicate rolling bearing failure accurately.


2012 ◽  
Vol 190-191 ◽  
pp. 993-997
Author(s):  
Li Jie Sun ◽  
Li Zhang ◽  
Yong Bo Yang ◽  
Da Bo Zhang ◽  
Li Chun Wu

Mechanical equipment fault diagnosis occupies an important position in the industrial production, and feature extraction plays an important role in fault diagnosis. This paper analyzes various methods of feature extraction in rolling bearing fault diagnosis and classifies them into two big categories, which are methods of depending on empirical rules and experimental trials and using objective methods for screening. The former includes five methods: frequency as the characteristic parameters, multi-sensor information fusion method, rough set attribute reduction method, "zoom" method and vibration signal as the characteristic parameters. The latter includes two methods: sensitivity extraction and data mining methods to select attributes. Currently, selection methods of feature parameters depend heavily on empirical rules and experimental trials, thus extraction results are be subjected to restriction from subjective level, feature extraction in the future will develop toward objective screening direction.


2013 ◽  
Vol 739 ◽  
pp. 413-417
Author(s):  
Ya Ning Wang

Laplace wavelet transform is self-adaptive to non-stationary and non-linear signal, which can detect the singularity characteristic of a signal precisely under strong background noise condition. A new method of bearing fault diagnosis based on multi-scale Laplace wavelet transform spectrum is proposed. The multi scale Laplace wavelet transform spectrum technique combines the advantages of Laplace wavelet transform, envelope spectrum and three dimensions color map into one integrated technique. The bearing fault vibration signal is firstly decomposed using Laplace wavelet transform. In the end, the multi scale Laplace wavelet transform spectrum is obtained and the characteristics of the bearing fault can be recognized according to the multi-scale Laplace wavelet transform spectrum. The proposed method has been verified by vibration signals obtained from rolling bearing with inner race fault.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jie Tao ◽  
Yilun Liu ◽  
Dalian Yang

In the rolling bearing fault diagnosis, the vibration signal of single sensor is usually nonstationary and noisy, which contains very little useful information, and impacts the accuracy of fault diagnosis. In order to solve the problem, this paper presents a novel fault diagnosis method using multivibration signals and deep belief network (DBN). By utilizing the DBN’s learning ability, the proposed method can adaptively fuse multifeature data and identify various bearing faults. Firstly, multiple vibration signals are acquainted from various fault bearings. Secondly, some time-domain characteristics are extracted from original signals of each individual sensor. Finally, the features data of all sensors are put into the DBN and generate an appropriate classifier to complete fault diagnosis. In order to demonstrate the effectiveness of multivibration signals, experiments are carried out on the individual sensor with the same conditions and procedure. At the same time, the method is compared with SVM, KNN, and BPNN methods. The results show that the DBN-based method is able to not only adaptively fuse multisensor data, but also obtain higher identification accuracy than other methods.


2014 ◽  
Vol 556-562 ◽  
pp. 2677-2680 ◽  
Author(s):  
Ling Jie Meng ◽  
Jia Wei Xiang

A new rolling bearing fault diagnosis approach is proposed. The original vibration signal is purified using the second generation wavelet denoising. The purified signal is further decomposed by an improved ensemble empirical mode decomposition (EEMD) method. A new selection criterion, including correlation analysis and the first two intrinsic mode functions (IMFs) with the maximum energy, is put forward to eliminate the pseudo low-frequency components. Experimental investigation show that the rolling bearing fault features can be effectively extracted.


Sign in / Sign up

Export Citation Format

Share Document