Time-Dependent Structural Topology Optimization Using a Continuous Adjoint Formulation

Author(s):  
Dimitrios I. Papadimitriou ◽  
Zissimos P. Mourelatos

A new time-dependent topology optimization methodology is presented based on a time-dependent continuous adjoint approach. The main advantage is its non-intrusiveness which allows us not to interfere with the discretization scheme of the finite-element or finite-volume topology optimization software. The discretization of the differential adjoint equations can be different from the discretization of the structural equations. The objective is to minimize the time-average compliance of a structure subject to a volume-based constraint. A gradient-based optimization algorithm is used. The sensitivity derivatives of a time-average compliance function with respect to the topology design parameters are computed using a time-dependent adjoint formulation. The self-adjoint feature is first presented for discrete time-dependent topology optimization and then extended to the continuous case. The proposed methodology is demonstrated using the topology optimization of a two dimensional and a three dimensional structure under time-dependent excitations.

Author(s):  
Carolyn Conner Seepersad ◽  
Janet K. Allen ◽  
David L. McDowell ◽  
Farrokh Mistree

Prismatic cellular or honeycomb materials exhibit favorable properties for multifunctional applications such as ultra-light load bearing combined with active cooling. Since these properties are strongly dependent on the underlying cellular structure, design methods are needed for tailoring cellular topologies with customized multifunctional properties that may be unattainable with standard cell designs. Topology optimization methods are available for synthesizing the form of a cellular structure—including the size, shape, and connectivity of cell walls and the number, shape, and arrangement of cell openings—rather than specifying these features a priori. To date, the application of these methods for cellular materials design has been limited primarily to elastic and thermo-elastic properties, however, and limitations of standard topology optimization methods prevent direct application to many other phenomena such as conjugate heat transfer with internal convection. In this paper, we introduce a practical, two-stage, flexibility-based, multifunctional topology design approach for applications that require customized multifunctional properties. As part of the approach, robust topology design methods are used to design flexible cellular topology with customized structural properties. Dimensional and topological flexibility is embodied in the form of robust ranges of cell wall dimensions and robust permutations of a nominal cellular topology. The flexibility is used to improve the heat transfer characteristics of the design via addition/removal of cell walls and adjustment of cellular dimensions, respectively, without degrading structural performance. We apply the method to design stiff, actively cooled prismatic cellular materials for the combustor liners of next-generation gas turbine engines.


2016 ◽  
Author(s):  
Ιωάννης Καββαδίας

Η παρούσα διδακτορική διατριβή ασχολείται με τη μαθηματική ανάπτυξη, τον προγραμματισμό και την πιστοποίηση των συνεχών συζυγών (continuous adjoint) μεθόδων για χρονικά μόνιμες και μή-μόνιμες τυρβώδεις ροές με έμφαση στην ακρίβεια των υπολογιζομένων παραγώγων ευαισθησίας για συναρτήσεις-στόχους που συναντώνται στην αεροδυναμική. Εξετάζονται προβλήματα βελτιστοποίησης μορφής καθώς και ελέγχου της ροής με χρήση δεσμών ρευστού, τόσο σε ακαδημαϊκά προβλήματα όσο και σε εφαρμογές της βιομηχανίας. Σχετικά με τη διαφόριση των μοντέλων τύρβης, η συνεχής συζυγής μέθοδος επεκτείνεται για να καλύπτει ροές που μοντελοποιούνται με το μοντέλο k−ω SST για πρώτη ϕορά στη σχετική βιβλιογραφία. Η αναλυτική διαφόριση του μοντέλου k−ω SST παρουσιάζει σημαντικές δυσκολίες καθώς περιέχει μη-διαφορίσιμες συναρτήσεις και προτείνεται η κατάλληλη αντιμετώπισή τους. Το συζυγές πρόβλημα διατυπώνεται τόσο για τη χαμηλών (LowRe) όσο και την υψηλών αριθμών (HighRe) (συναρτήσεις τοίχου) Reynolds της τύρβης εκδοχή του μοντέλου k−ω SST . Ταυτοχρόνως, εξετάζονται οι επιπτώσεις του να αμελείται η παραγώγιση του μοντέλου τύρβης κατά την ανάπτυξη της συζυγούς μεθόδου (frozen turbulence assumption). Η συζυγής μέθοδος αναπτύσσεται δύο φορές, στη βάση δύο διαφορετικών μαθηματικών προσεγγίσεων. Και με τις δύο παράγονται οι ίδιες συζυγείς εξισώσεις και οριακές συνθήκες. Διαφορές εντοπίζονται στον τύπο υπολογισμού των παραγώγων ευαισθησίας. Σύμφωνα με την πρώτη, τη μέθοδο των Επιφανειακών Ολοκληρωμάτων (Surface Integral -SI- adjoint formulation), αυτές εκφράζονται αποκλειστικά με επιφανειακά ολοκληρώματα. Αντίθετα, στη δεύτερη, τη μέθοδο των Χωρικών Ολοκληρωμάτων (Field Integral -FI- adjoint formulation), οι παράγωγοι εκφράζονται με συνδυασμό ολοκληρωμάτων τόσο στην επιφάνεια όσο και στο χώρο του υπολογιστικού χωρίου. Ανάμεσα στις δύο συζυγείς διατυπώσεις, τις SI και FI, παρατηρούνται αριθμητικές διαφορές στις υπολογιζόμενες παραγώγους οι οποίες και γίνονται ιδιαίτερα εμφανείς σε μη-επαρκώς πυκνά πλέγματα. Για αυτόν τον λόγο, επανεξετάζεται η ισοδυναμία τους, τόσο αναλυτικά όσο και αριθμητικά. Όπως αναμένονταν, αναλυτικά οι δύο προσεγγίσεις προκύπτουν ισοδύναμες. Η αριθμητική διαφορά τους οφείλεται στον λανθασμένο χειρισμό ενός όρου της SI διατύπωσης ο οποίος εκφράζει τη συμβολή των παραγώγων ευαισθησίας πλέγματος (grid sensitivities) στις παραγώγους της συνάρτησης-στόχου. Για την αντιμετώπισή του, προτείνεται ένας διαφορετικός χειρισμός του όρου αυτού, με τον οποίο είναι δυνατός ο σωστός υπολογισμός παραγώγων (σε συμφωνία με αυτές που υπολογίζονται από την FI διατύπωση), αυξάνοντας όμως αρκετά το υπολογιστικό κόστος, το οποίο γίνεται ίσο με αυτό της FI διατύπωσης. Καθώς αυτό δεν είναι επιθυμητό, ιδιαίτερα σε μεγάλες βιομηχανικές εφαρμογές, προτείνεται μία νέα συζυγής διατύπωση, η Εμπλουτισμένη διατύπωση των Επιφανειακών Ολοκληρωμάτων (Enhanced Surface Integral -E-SI- adjoint formulation), η οποία έχει την ακρίβεια της FI διατύπωσης αλλά το υπολογιστικό κόστος της SI. Ακόμα, η συζυγής διατύπωση επεκτείνεται για ροές σε βαθμίδες στροβιλομηχανών, λαμβάνοντας υπόψη την αλληλεπίδραση κινητής και σταθερής πτερύγωσης. Χρησιμοποιείται το μοντέλο Πολλαπλών Συστημάτων Αναφοράς (Multiple Reference Frame) με την παραδοχή του ≪παγωμένου δρομέα≫. Η συζυγής διατύπωση παρουσιάζεται για στρωτές ροές καθώς η γενίκευσή της σε τυρβώδεις ροές δεν παρουσιάζει καμία δυσκολία, εάν υπάρχει διαθέσιμο το εν χρήση συζυγές μοντέλο τύρβης. Στοχεύοντας μέγιστο βαθμό απόδοσης, η προτεινόμενη συζυγής διατύπωση εφαρμόζεται στη βελτιστοποίηση φυγοκεντρικής αντλίας. Για την επιτάχυνση και σταθεροποίηση της αριθμητικής λύσης των εξισώσεων ροής καθώς και των συζυγών αυτών, αναπτύσσεται η Μέθοδος των Αναδρομικών Προβολών (Recursive Projection Method, RPM) σε περιβάλλον OpenFoam©. Ιδιαίτερη έμφαση δίνεται στη χρήση της μεθόδου για τη σταθεροποίηση της επίλυσης του συζυγούς προβλήματος σε ροές που παρουσιάζουν μικρής κλίμακας χρονικές μεταβολές (οι οποίες συνήθως οδηγούν σε απόκλιση του συζυγούς προβλήματος). Μέσω της αναγνώρισης και της κατάλληλης αντιμετώπισης της κυρίαρχης ιδιοτιμής του συστήματος προς επίλυση, εξασφαλίζεται η σύγκλιση. Χρησιμοποιώντας τις μεθόδους που παρουσιάστηκαν παραπάνω, χαράζονται χάρτες ευαισθησίας σε γεωμετρίες πραγματικών αυτοκινήτων. Συγκεκριμένα, εξετάζονται το πρωτότυπο αυτοκίνητο L1 της VW και το επιβατικό μοντέλο A7 της AUDI. Σε αυτά, οι χάρτες ευαισθησίας που χαράζονται δείχνουν στον σχεδιαστή ποιες περιοχές κάθε γεωμετρίας έχουν δυνατότητες βελτίωσης και πως πρέπει να διαμορφωθούν για τη μείωση της οπισθέλκουσας. Η πληροφορία αυτή βοηθά στην αεροδυναμική βελτιστοποίηση της μορφής του αυτοκινήτου, χωρίς όμως να υλοποιεί αναγκαστικά βρόχο βελτιστοποίησης. Επιπλέον, αναπτύσσεται η συζυγής μέθοδος για τις χρονικά μη-μόνιμες Navier–Stokes εξισώσεις, για προβλήματα βελτιστοποίησης μορφής καθώς και ελέγχου ροής με χρήση δεσμών ρευστού. Χρησιμοποιείται η μέθοδος των σταθμών ελέγχου (checkpoints) για την αντιμετώπιση της αντίθετης-στον-χρόνο ολοκλήρωσης των χρονικά μη-μόνιμων συζυγών εξισώσεων. Ως προς τον έλεγχο της ροής, εξετάζονται ροές γύρω από κυλινδρικές γεωμετρίες οι οποίες ελέγχονται μέσω παλλόμενων δεσμών ρευστού. Σχετικά με τη βελτιστοποίηση μορφής, η ϕυγοκεντρική αντλία, η οποία ήδη εξετάστηκε υπό την παραδοχή του ≪παγωμένου δρομέα≫, επανεξετάζεται χρησιμοποιώντας χρονικά μη-μόνιμους επιλύτες ροής και συζυγούς προβλήματος.


2021 ◽  
Author(s):  
Fellcitas Schäfer ◽  
Luca Magri ◽  
Wolfgang Polifke

Abstract A method is proposed that allows the computation of the continuous adjoint of a thermoacoustic network model based on the discretized direct equations. This hybrid approach exploits the self-adjoint character of the duct element, which allows all jump conditions to be derived from the direct scattering matrix. In this way, the need to derive the adjoint equations for every element of the network model is eliminated. This methodology combines the advantages of the discrete and continuous adjoint, as the accuracy of the continuous adjoint is achieved whilst maintaining the flexibility of the discrete adjoint. It is demonstrated how the obtained adjoint system may be utilized to optimize a thermoacoustic configuration by determining the optimal damper setting for an annular combustor.


Author(s):  
Dimitiros I. Papadimitriou ◽  
Kyriakos C. Giannakoglou

In this paper, a constrained optimization algorithm is formulated and utilized to improve the aerodynamic performance of a 3D peripheral compressor blade cascade. The cascade efficiency is measured in terms of entropy generation along the developed flowfield, which defines the field objective functional to be minimized. Its gradient with respect to the design variables, which are the coordinates of the Non-Uniform Rational B-Spline (NURBS) control points defining the blade, is computed through a continuous adjoint formulation of the Navier-Stokes equations based on the aforementioned functional. The steepest descent algorithm is used to locate the optimal set of design variables, i.e. the optimal blade shape. In addition to the well-known advantages of the adjoint method, the current formulation has even less CPU cost for the gradient computation as it leads to gradient expression which is free of field variations in geometrical quantities (such as derivatives of interior grid node coordinates with respect to the design variables); the computation of the latter would be costly since it requires remeshing anew the computational domain for each bifurcated design variable. The geometrical constraints, which depend solely on the blade parameterization, are handled by a quadratic penalty method by introducing additional Lagrange multipliers.


Author(s):  
Lei Chen ◽  
Jiang Chen

The adjoint method eliminates the dependence of the gradient of the objective function with respect to design variables on the flow field making the obtainment of the gradient both accurate and fast. For this reason, the adjoint method has become the focus of attention in recent years. This paper develops a continuous adjoint formulation for through-flow aerodynamic shape design in a multi-stage gas turbine environment based on a S2 surface quasi-3D problem governed by the Euler equations with source terms. Given the general expression of the objective function calculated via a boundary integral, the adjoint equations and their boundary conditions are derived in detail by introducing adjoint variable vectors. As a result, the final expression of the objective function gradient only includes the terms pertinent to those physical shape variations that are calculated by metric variations. The adjoint system is solved numerically by a finite-difference method with explicit Euler time-marching scheme and a Jameson spatial scheme which employs first and third order dissipative flux. Integrating the blade stagger angles and passage perturbation parameterization with the simple steepest decent method, a gradient-based aerodynamic shape design system is constructed. Finally, the application of the adjoint method is validated through a 5-stage turbine blade and passage optimization with an objective function of entropy generation. The result demonstrates that the gradient-based system can be used for turbine aerodynamic design.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Carolyn Conner Seepersad ◽  
Janet K. Allen ◽  
David L. McDowell ◽  
Farrokh Mistree

Prismatic cellular or honeycomb materials exhibit favorable properties for multifunctional applications such as ultralight load bearing combined with active cooling. Since these properties are strongly dependent on the underlying cellular structure, design methods are needed for tailoring cellular topologies with customized multifunctional properties. Topology optimization methods are available for synthesizing the form of a cellular structure—including the size, shape, and connectivity of cell walls and openings—rather than specifying these features a priori. To date, the application of these methods for cellular materials design has been limited primarily to elastic and thermoelastic properties, and limitations of classic topology optimization methods prevent a direct application to many other phenomena such as conjugate heat transfer with internal convection. In this paper, a practical, two-stage topology design approach is introduced for applications that require customized multifunctional properties. In the first stage, robust topology design methods are used to design flexible cellular topology with customized structural properties. Dimensional and topological flexibility is embodied in the form of robust ranges of cell wall dimensions and robust permutations of a nominal cellular topology. In the second design stage, the flexibility is used to improve the heat transfer characteristics of the design via addition/removal of cell walls and adjustment of cellular dimensions without degrading structural performance. The method is applied to design stiff, actively cooled prismatic cellular materials for the combustor liners of next-generation gas turbine engines.


2015 ◽  
Vol 32 (2) ◽  
Author(s):  
Lei Chen ◽  
Jiang Chen

AbstractThis paper develops a continuous adjoint formulation for the aerodynamic shape design of a turbine in a multi-stage environment based on S


BMJ Open ◽  
2017 ◽  
Vol 7 (9) ◽  
pp. e015347 ◽  
Author(s):  
Mauricio Herrera-López ◽  
Olga Gómez-Ortiz ◽  
Rosario Ortega-Ruiz ◽  
Darrick Jolliffe ◽  
Eva M. Romera

Objectives(1) To examine the psychometric properties of the Basic Empathy Scale (BES) with Spanish adolescents, comparing a two and a three-dimensional structure;(2) To analyse the relationship between the three-dimensional empathy and social and normative adjustment in school.DesignTransversal and ex post facto retrospective study. Confirmatory factorial analysis, multifactorial invariance analysis and structural equations models were used.Participants747 students (51.3% girls) from Cordoba, Spain, aged 12–17 years (M=13.8; SD=1.21).ResultsThe original two-dimensional structure was confirmed (cognitive empathy, affective empathy), but a three-dimensional structure showed better psychometric properties, highlighting the good fit found in confirmatory factorial analysis and adequate internal consistent valued, measured with Cronbach’s alpha and McDonald’s omega. Composite reliability and average variance extracted showed better indices for a three-factor model. The research also showed evidence of measurement invariance across gender. All the factors of the final three-dimensional BES model were direct and significantly associated with social and normative adjustment, being most strongly related to cognitive empathy.ConclusionsThis research supports the advances in neuroscience, developmental psychology and psychopathology through a three-dimensional version of the BES, which represents an improvement in the original two-factorial model. The organisation of empathy in three factors benefits the understanding of social and normative adjustment in adolescents, in which emotional disengagement favours adjusted peer relationships. Psychoeducational interventions aimed at improving the quality of social life in schools should target these components of empathy.


Author(s):  
Patrick V. Hull ◽  
Stephen Canfield

The field of distributed-compliance mechanisms has seen significant work in developing suitable topology optimization tools for their design. These optimal design tools have grown out of the techniques of structural optimization. This paper will build on the previous work in topology optimization and compliant mechanism design by proposing an alternative design space parameterization through control points and adding another step to the process, that of subdivision. The control points assist a specific design to be represented as a solid model during the optimization process. The process of subdivision creates an additional number of control points that help smooth the surface (for example a C2 continuous surface depending on the method of subdivision chosen) creating a manufacturable design free of traditional numerical instabilities. Note that these additional control points do not add to the number of design parameters. This alternative parameterization and description as a solid model effectively and completely separates the design variables from the analysis variables during the optimization procedure. The motivation behind this work is to avoid several of the numerical instabilities that occur in topology optimization and to create an automated design tool from task definition to functional prototype created on a CNC or rapid-prototype machine. This paper will describe the complaint mechanism design process including subdivision and will demonstrate the procedure on several common examples.


Sign in / Sign up

Export Citation Format

Share Document