The Earlier the Better? Investigating the Importance of Timing on Effectiveness of Design for Additive Manufacturing Education

Author(s):  
Rohan Prabhu ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

Additive Manufacturing (AM) is a novel process that enables the manufacturing of complex geometries through layer-by-layer deposition of material. AM processes provide a stark contrast to traditional, subtractive manufacturing processes, which has resulted in the emergence of design for additive manufacturing (DfAM) to capitalize on AM’s capabilities. In order to support the increasing use of AM in engineering, it is important to shift from the traditional design for manufacturing and assembly mindset, towards integrating DfAM. To facilitate this, DfAM must be included in the engineering design curriculum in a manner that has the highest impact. While previous research has systematically organized DfAM concepts into process capability-based (opportunistic) and limitation-based (restrictive) considerations, limited research has been conducted on the impact of teaching DfAM on the student’s design process. This study investigates this interaction by comparing two DfAM educational interventions conducted at different points in the academic semester. The two versions are compared by evaluating the students’ perceived utility, change in self-efficacy, and the use of DfAM concepts in design. The results show that introducing DfAM early in the semester when students have little previous experience in AM resulted in the largest gains in students perceiving utility in learning about DfAM concepts and DfAM self-efficacy gains. Further, we see that this increase relates to greater application of opportunistic DfAM concepts in student design ideas in a DfAM challenge. However, no difference was seen in the application of restrictive DfAM concepts between the two interventions. These results can be used to guide the design and implementation of DfAM education.

2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Rohan Prabhu ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

Abstract Additive manufacturing (AM) processes offer unique capabilities (i.e., opportunities) yet inherent limitations (i.e., restrictions) due to the layer-by-layer fabrication of parts. Despite the newfound design freedom and increased use of AM, limited research has investigated how knowledge of the AM processes affects the creativity of students’ ideas after being exposed to AM. This study investigates this gap through an experimental study with 343 participants recruited from a junior-level mechanical engineering design course. The participants were exposed to three variations in design for additive manufacturing (DfAM) education: (1) no DfAM, (2) restrictive DfAM, and (3) opportunistic and restrictive (dual) DfAM education. The effects of these three interventions were measured through differences in (1) participants’ self-reported use of DfAM in a design challenge and (2) expert assessment of the creativity of the outcomes from the said design challenge. The results of the study indicated that variations in DfAM content did not result in differences in the participants’ self-reported use of either opportunistic or restrictive DfAM, with all three groups reporting similar levels of emphasis. Further, participants from all three groups reported higher use of restrictive DfAM techniques, compared with opportunistic DfAM. Moreover, while variations in the content had no effect on the creativity (uniqueness and usefulness) of the participants’ design outcomes, teaching both opportunistic and restrictive DfAM did result in the generation of designs with greater AM technical goodness—a novel and significant finding in our study. The results of this study highlight the need for DfAM educational interventions that encourage students to not only learn about but also integrate both opportunistic and restrictive concepts effectively into their creative design process. This would result in the generation of innovative products that leverage the design freedom enabled by AM, yet addressing the limitations inherent in the process.


2019 ◽  
Vol 142 (3) ◽  
Author(s):  
Rohan Prabhu ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

Abstract The integration of additive manufacturing (AM) processes in many industries has led to the need for AM education and training, particularly on design for AM (DfAM). To meet this growing need, several academic institutions have implemented educational interventions, especially project- and problem-based, for AM education; however, limited research has explored how the choice of the problem statement influences the design outcomes of a task-based AM/DfAM intervention. This research explores this gap in the literature through an experimental study with 175 undergraduate engineering students. Specifically, the study compared the effects of restrictive and dual (restrictive and opportunistic) DfAM education, when introduced through design tasks that differed in the explicit use of design objectives and functional and manufacturing constraints in defining them. The effects of the intervention were measured through (1) changes in participant DfAM self-efficacy, (2) participants' self-reported emphasis on DfAM, and (3) the creativity of participants' design outcomes. The results show that the choice of the design task has a significant effect on the participants' self-efficacy with, and their self-reported emphasis on, certain DfAM concepts. The results also show that the design task containing explicit constraints and objectives results in participants generating ideas with greater uniqueness compared with the design task with fewer explicit constraints and objectives. These findings highlight the importance of the chosen problem statement on the outcomes of a DfAM educational intervention, and future work is also discussed.


2021 ◽  
Author(s):  
Rohan Prabhu ◽  
Timothy W. Simpson ◽  
Scarlett R. Miller ◽  
Nicholas A. Meisel

Abstract Given the growing presence of additive manufacturing (AM) processes in engineering design and manufacturing, there has emerged an increased interest in introducing AM and design for AM (DfAM) educational interventions in engineering education. Several researchers have proposed AM and DfAM educational interventions; however, some argue that these efforts might not be sufficient to develop higher-level skills among engineers (e.g., identifying design opportunities that leverage AM capabilities). Prior work has shown that longer, distributed educational interventions are more effective in encouraging learning and information retention; however, these interventions could also be time-consuming and expensive to implement. Therefore, there is a need to test the effectiveness of longer, distributed DfAM educational interventions compared to shorter, lecture-style interventions. Our aim in this research is to explore this research gap through an experimental study. Specifically, we compared two variations of a DfAM educational intervention: (1) a module-style intervention spread over two sessions with the introduction of DfAM evaluation metrics, and (2) a lecture-style intervention completed in a single session with no evaluation metrics introduced. From our results, we see that students who received the module-style intervention reported a greater increase in their DfAM self-efficacy. Additionally, students who received the module-style intervention reported having given a greater emphasis on part consolidation and feature size. Finally, we observe that the structure of the educational intervention did not influence the creativity of ideas generated by the participants. These findings highlight the utility of module-style DfAM educational interventions towards increasing DfAM self-efficacy, but not necessarily design creativity. Moreover, these findings highlight the need to formulate educational interventions that are effective and efficient.


Author(s):  
Nashat Nawafleh ◽  
Jordan Chabot ◽  
Mutabe Aljaghtham ◽  
Cagri Oztan ◽  
Edward Dauer ◽  
...  

Abstract Additive manufacturing is defined as layer-by-layer deposition of materials on a surface to fabricate 3D objects with reduction in waste, unlike subtractive manufacturing processes. Short, flexible Kevlar fibers have been used in numerous studies to alter mechanical performance of structural components but never investigated within printed thermoset composites. This study investigates the effects of adding short Kevlar fibers on mechanical performance of epoxy thermoset composites and demonstrates that the addition of Kevlar by 5% in weight significantly improves flexure strength, flexural modulus, and failure strain by approximately 49%, 19%, and 38%, respectively. Hierarchical microstructures were imaged using scanning electron microscopy to observe the artefacts such as porosity, infill and material interdiffusion, which are inherent drawbacks of the 3D printing process.


Materials ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1317 ◽  
Author(s):  
Laura Conti ◽  
Daniel Bienenstein ◽  
Mario Borlaf ◽  
Thomas Graule

Lithography-based ceramics manufacturing (LCM) processes enable the sophisticated 3 dimensional (3D) shaping of ceramics by additive manufacturing (AM). The build-up occurs, like many other AM processes, layer by layer, and is initiated by light. The built-in digital mirror device (DMD) enables the specific exposure of desired pixels for every layer, giving as a consequence a first estimation of the printing resolution in the x and y axes. In this work, a commercial zirconia slurry and the CeraFab 7500, both from Lithoz GmbH (Vienna, Austria), were used to investigate the potential of reaching this resolution. The results showed that the precision of a part is strongly dependent on the applied exposure energy. Higher exposure energies resulted in oversized dimensions of a part, whereas too low energy was not able to guarantee the formation of a stable part. Furthermore, the investigation of the layer thickness showed that the applied exposure energy (mJ/cm2) was acting in a volume, and the impact is visible in x, y, and z dimensions. The lowest applied exposure energy was 83 mJ/cm2 and showed the most accurate results for a layer thickness of 25 μm. With this energy, holes and gaps smaller than 500 μm could be printed; however, the measurements differed significantly from the dimensions defined in the design. Holes and gaps larger than 500 μm showed deviations smaller than 50 μm from the design and could be printed reliably. The thinnest printable gaps were between 100 and 200 μm. Concerning the wall thickness, the experiments were conducted to a height of 1 cm. Taking into account the stability and deformation of the walls as well, the best results after sintering were achieved with thicknesses of 200–300 μm.


Author(s):  
Rohan Prabhu ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

Abstract Additive manufacturing (AM) processes present designers with creative freedoms beyond the capabilities of traditional manufacturing processes. However, to successfully leverage AM, designers must balance their creativity against the limitations inherent in these processes to ensure the feasibility of their designs. This feasible adoption of AM can be achieved if designers learn about and apply opportunistic and restrictive design for AM (DfAM) techniques at appropriate stages of the design process. Researchers have demonstrated the effect of the order of presentation of information on the learning and retrieval of said information; however, there is a need to explore this effect within DfAM education. In this paper, we explore this gap through an experimental study involving 195 undergraduate engineering students. Specifically, we compare two variations in DfAM education: (1) opportunistic DfAM followed by restrictive DfAM, and (2) restrictive DfAM followed by opportunistic DfAM, against only opportunistic DFAM and only restrictive DfAM training. These variations are compared through (1) differences in participants’ DfAM self-efficacy, (2) their self-reported DfAM use, and (3) the creativity of their design outcomes. From the results, we see that only students trained in opportunistic DfAM, with or without restrictive DfAM, present a significant increase in their opportunistic DfAM self-efficacy. However, all students trained in DfAM — opportunistic, restrictive, or both — demonstrated an increase in their restrictive DfAM self-efficacy. Further, we see that teaching restrictive DfAM first followed by opportunistic DfAM results in the generation of ideas with greater creativity — a novel research finding. These results highlight the need for educators to account for the effects of the order of presenting content to students, especially when educating students about DfAM.


2021 ◽  
Vol 7 (2) ◽  
pp. 188-195
Author(s):  
Dong-Gyu Ahn

In recent years, additive manufacturing (AM) processes have emerged as an important manufacturing technology for a multi-item small sized production to lead the 4th industrial revolution. The layer-by-layer deposition characteristics of AM process can rapidly produce physical parts with three-dimensional geometry and desired functionality in a relatively low cost environment. The goal of this paper is to investigate the applicability of AM process to appropriate technologies for developing countries. Through the review of examples of appropriate technology of the AM process, the possibility of a practical usage of the AM process for the appropriate technologies is examined. In addition, significant applications of the AM process to the appropriate technology are introduced. Finally, future issues related to production of physical parts for developing countries using the AM process are discussed from the viewpoint of the appropriate technology.


2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Rohan Prabhu ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

AbstractResearch in additive manufacturing (AM) has increased the use of AM in many industries, resulting in a commensurate need for a workforce skilled in AM. In order to meet this need, educational institutions have undertaken different initiatives to integrate design for additive manufacturing (DfAM) into the engineering curriculum. However, limited research has explored the impact of these educational interventions in bringing about changes in the technical goodness of students' design outcomes, particularly through the integration of DfAM concepts in an engineering classroom environment. This study explores this gap using an experimental study with 193 participants recruited from a junior-level course on mechanical engineering design. The participants were split into three educational intervention groups: (1) no DfAM, (2) restrictive DfAM, and (3) restrictive and opportunistic (dual) DfAM. The effects of the educational intervention on the participants' use of DfAM were measured through changes in (1) participants' DfAM self-efficacy, (2) technical goodness of their AM design outcomes, and (3) participants' use of DfAM-related concepts when describing and evaluating their AM designs. The results showed that while all three educational interventions result in similar changes in the participants' opportunistic DfAM self-efficacy, participants who receive only restrictive DfAM inputs show the greatest increase in their restrictive DfAM self-efficacy. Further, we see that despite these differences, all three groups show a similar decrease in the technical goodness of their AM designs, after attending the lectures. A content analysis of the participants' design descriptions and evaluations revealed a simplification of their design geometries, which provides a possible explanation for the decrease in their technical goodness, despite the encouragement to utilize the design freedom of AM to improve functionality or optimize the weight of the structure. These results emphasize the need for more in-depth DfAM education to encourage the use of both opportunistic and restrictive DfAM during student design challenges. The results also highlight the possible influence of how the design problem is stated on the use of DfAM in solving it.


Author(s):  
Yuanbin Wang ◽  
Robert Blache ◽  
Xun Xu

Additive manufacturing (AM) has experienced a phenomenal expansion in recent years and new technologies and materials rapidly emerge in the market. Design for Additive Manufacturing (DfAM) becomes more and more important to take full advantage of the capabilities provided by AM. However, most people still have limited knowledge to make informed decisions in the design stage. Therefore, an interactive DfAM system in the cloud platform is proposed to enable people sharing the knowledge in this field and guide the designers to utilize AM efficiently. There are two major modules in the system, decision support module and knowledge management module. A case study is presented to illustrate how this system can help the designers understand the capabilities of AM processes and make rational decisions.


2015 ◽  
Vol 6 (2) ◽  
pp. 63-86
Author(s):  
Dipesh Dhital ◽  
Yvonne Ziegler

Additive Manufacturing also known as 3D Printing is a process whereby a real object of virtually any shape can be created layer by layer from a Computer Aided Design (CAD) model. As opposed to the conventional Subtractive Manufacturing that uses cutting, drilling, milling, welding etc., 3D printing is a free-form fabrication process and does not require any of these processes. The 3D printed parts are lighter, require short lead times, less material and reduce environmental footprint of the manufacturing process; and is thus beneficial to the aerospace industry that pursues improvement in aircraft efficiency, fuel saving and reduction in air pollution. Additionally, 3D printing technology allows for creating geometries that would be impossible to make using moulds and the Subtractive Manufacturing of drilling/milling. 3D printing technology also has the potential to re-localize manufacturing as it allows for the production of products at the particular location, as and when required; and eliminates the need for shipping and warehousing of final products.


Sign in / Sign up

Export Citation Format

Share Document