scholarly journals Investigation of Applicability of Additive Manufacturing Processes to Appropriate Technologies for Developing Countries

2021 ◽  
Vol 7 (2) ◽  
pp. 188-195
Author(s):  
Dong-Gyu Ahn

In recent years, additive manufacturing (AM) processes have emerged as an important manufacturing technology for a multi-item small sized production to lead the 4th industrial revolution. The layer-by-layer deposition characteristics of AM process can rapidly produce physical parts with three-dimensional geometry and desired functionality in a relatively low cost environment. The goal of this paper is to investigate the applicability of AM process to appropriate technologies for developing countries. Through the review of examples of appropriate technology of the AM process, the possibility of a practical usage of the AM process for the appropriate technologies is examined. In addition, significant applications of the AM process to the appropriate technology are introduced. Finally, future issues related to production of physical parts for developing countries using the AM process are discussed from the viewpoint of the appropriate technology.

Author(s):  
Ganzi Suresh

Additive manufacturing (AM) is also known as 3D printing and classifies various advanced manufacturing processes that are used to manufacture three dimensional parts or components with a digital file in a sequential layer-by-layer. This chapter gives a clear insight into the various AM processes that are popular and under development. AM processes are broadly classified into seven categories based on the type of the technology used such as source of heat (ultraviolet light, laser) and type materials (resigns, polymers, metal and metal alloys) used to fabricate the parts. These AM processes have their own merits and demerits depending upon the end part application. Some of these AM processes require extensive post-processing in order to get the finished part. For this process, a separate machine is required to overcome this hurdle in AM; hybrid manufacturing comes into the picture with building and post-processing the part in the same machine. This chapter also discusses the fourth industrial revolution (I 4.0) from the perspective of additive manufacturing.


2021 ◽  
Author(s):  
Fábio Silva Cerejo ◽  
Daniel Gatões ◽  
Teresa Vieira

Abstract Additive manufacturing (AM) of metallic powder particles has been establishing itself as sustainable, whatever the technology selected. Material Extrusion (MEX) integrates the ongoing effort to improve AM sustainability, in which low-cost equipment is associated with a decrease of powder waste during manufacturing. MEX has been gaining increasing interest for building 3D functional/structural metallic parts because it incorporates the consolidated knowledge from powder injection moulding/extrusion feedstocks into the AM scope—filament extrusion layer-by-layer. Moreover, MEX as an indirect process can overcome some of the technical limitations of direct AM processes (laser/electron-beam-based) regarding energy-matter interactions. The present study reveals an optimal methodology to produce MEX filament feedstocks (metallic powder, binder and additives), having in mind to attain the highest metallic powder content. Nevertheless, the main challenges are also to achieve high extrudability and a suitable ratio between stiffness and flexibility. The metallic powder volume content (vol.%) in the feedstocks was evaluated by the critical powder volume concentration (CPVC). Subsequently, the rheology of the feedstocks was established by means of the mixing torque value, which is related to the filament extrudability performance.


2021 ◽  
Vol 13 (4) ◽  
pp. 167-180
Author(s):  
Andra TOFAN-NEGRU ◽  
Cristian BARBU ◽  
Amado STEFAN ◽  
Ioana-Carmen BOGLIS

Recently, additive manufacturing (AM) processes have expanded rapidly in various fields of the industry because they offer design freedom, involve layer-by-layer construction from a computerized 3D model (minimizing material consumption), and allow the manufacture of parts with complex geometry (thus offering the possibility of producing custom parts). Also, they provide the advantage of a short time to make the final parts, do not involve the need for auxiliary resources (cutting tools, lighting fixtures or coolants) and have a low impact on the environment. However, the aspects that make these technologies not yet widely used in industry are poor surface quality of parts, uncertainty about the mechanical properties of products and low productivity. Research on the physical phenomena associated with additive manufacturing processes is necessary for proper control of the phenomena of melting, solidification, vaporization and heat transfer. This paper addresses the relevant additive manufacturing processes and their applications and analyzes the advantages and disadvantages of AM processes compared to conventional production processes. For the aerospace industry, these technologies offer possibilities for manufacturing lighter structures to reduce weight, but improvements in precision must be sought to eliminate the need for finishing processes.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Damien Chaney ◽  
Julien Gardan ◽  
Julien De Freyman

Purpose The purpose of this paper is to present the relationship implications of additive manufacturing (AM), which has the ability to produce layer-by-layer three-dimensional complex products by adding material in comparison to traditional manufacturing processes which remove material – for industrial marketing. Design/methodology/approach After presenting the literature on customer relationships and digital technologies in business-to-business, the study uses a “zoom-out” and “zoom-in” perspective to review the extant literature on AM and then makes study propositions for industrial marketing. Findings Through the adoption of AM technologies, the study suggests that firms can improve their level of servitization through customized products, offer more sustainable value propositions and empower their customers through the sale of digital files, which can be considered as levers to strengthen relationships with customers. Research limitations/implications This paper makes several propositions regarding the relationship implications of AM for industrial marketing that further research should test. Practical implications This paper highlights the relational benefits that adopting AM may represent for companies. Originality/value While AM which is considered as an industrial revolution has generated a wide body of research in engineering and operations and technology management sciences, its impact on industrial marketing remains understudied.


Author(s):  
Rohan Prabhu ◽  
Scarlett R. Miller ◽  
Timothy W. Simpson ◽  
Nicholas A. Meisel

Additive Manufacturing (AM) is a novel process that enables the manufacturing of complex geometries through layer-by-layer deposition of material. AM processes provide a stark contrast to traditional, subtractive manufacturing processes, which has resulted in the emergence of design for additive manufacturing (DfAM) to capitalize on AM’s capabilities. In order to support the increasing use of AM in engineering, it is important to shift from the traditional design for manufacturing and assembly mindset, towards integrating DfAM. To facilitate this, DfAM must be included in the engineering design curriculum in a manner that has the highest impact. While previous research has systematically organized DfAM concepts into process capability-based (opportunistic) and limitation-based (restrictive) considerations, limited research has been conducted on the impact of teaching DfAM on the student’s design process. This study investigates this interaction by comparing two DfAM educational interventions conducted at different points in the academic semester. The two versions are compared by evaluating the students’ perceived utility, change in self-efficacy, and the use of DfAM concepts in design. The results show that introducing DfAM early in the semester when students have little previous experience in AM resulted in the largest gains in students perceiving utility in learning about DfAM concepts and DfAM self-efficacy gains. Further, we see that this increase relates to greater application of opportunistic DfAM concepts in student design ideas in a DfAM challenge. However, no difference was seen in the application of restrictive DfAM concepts between the two interventions. These results can be used to guide the design and implementation of DfAM education.


Author(s):  
Fábio Cerejo ◽  
Daniel Gatões ◽  
M. T. Vieira

AbstractAdditive manufacturing (AM) of metallic powder particles has been establishing itself as sustainable, whatever the technology selected. Material extrusion (MEX) integrates the ongoing effort to improve AM sustainability, in which low-cost equipment is associated with a decrease of powder waste during manufacturing. MEX has been gaining increasing interest for building 3D functional/structural metallic parts because it incorporates the consolidated knowledge from powder injection moulding/extrusion feedstocks into the AM scope—filament extrusion layer-by-layer. Moreover, MEX as an indirect process can overcome some of the technical limitations of direct AM processes (laser/electron-beam-based) regarding energy-matter interactions. The present study reveals an optimal methodology to produce MEX filament feedstocks (metallic powder, binder, and additives), having in mind to attain the highest metallic powder content. Nevertheless, the main challenges are also to achieve high extrudability and a suitable ratio between stiffness and flexibility. The metallic powder volume content (vol.%) in the feedstocks was evaluated by the critical powder volume concentration (CPVC). Subsequently, the rheology of the feedstocks was established by means of the mixing torque value, which is related to the filament extrudability performance.


Author(s):  
Manoj Kumar Agrawal

The latest process involved in the design, development and delivery of products to the end users has been implemented utilizing additive manufacturing (AM) or three-dimensional (3D) printing. This technology provides a great deal of freedom in the production of complicated parts, highly personalized goods and effective waste reduction. The new technological and Industrial revolution, utilizes the incorporation of intelligent fabrication and CAD processes. Via its various advantages, such as time and material savings, rapid prototyping, has enhanced productivity as well as distributed manufacturing processes, where AM actively participates and plays significant role in the industrial advancements. This paper is intended to conduct an analytical review of the latest developments and technological aspects in the AM innovation. This paper also explores the viability of the additive manufacturing mechanism as well as the advantages of the product in global, social and ecological fields. At last, the paper finishes with an outline of AM's potential in technologies, implementations and products developments, which will generate new concepts for AM discovery in the coming years..


3D Printing ◽  
2017 ◽  
pp. 145-152
Author(s):  
Tihomir Mitev

The additive manufacturing (or the popular 3D printing) is relatively new technology which opens new spaces for entrepreneurial imagination and promises next stage of the industrial revolution. It is creating three dimensional solid objects from a digital file. The printer transforms the file into a material object layer by layer, using different raw materials. Today, the additive manufacturing is successfully used in architecture, medicine and healthcare, light and heavy industries, education, etc. The paper analyses the roles of actors in manufacturing the objects. It starts with the Heideggerian questioning of technology (), searching for the causes of bringing into appearance of the 3D model. According to Heideggerian analysis the technology is represented as an ‘unveiling of the truth'. The paper suggests that the old understanding of matter as a thing-in-itself should be replaced by a new, flexible, fluid, concept of matter, which is more or less manipulable. The matter is no more an occasion for object's taking place. On the other hand, it seems 3D printing technology is reduced to mere means; a simple intermediary, a copier of ideas. From that perspective the paper questioning the problem of action in ANT and search how action and interaction is distributed and how actors constitutes themselves as well as their actor-world.


Author(s):  
Tihomir Mitev

The additive manufacturing (or the popular 3D printing) is relatively new technology which opens new spaces for entrepreneurial imagination and promises next stage of the industrial revolution. It is creating three dimensional solid objects from a digital file. The printer transforms the file into a material object layer by layer, using different raw materials. Today, the additive manufacturing is successfully used in architecture, medicine and healthcare, light and heavy industries, education, etc. The paper analyses the roles of actors in manufacturing the objects. It starts with the Heideggerian questioning of technology (), searching for the causes of bringing into appearance of the 3D model. According to Heideggerian analysis the technology is represented as an ‘unveiling of the truth'. The paper suggests that the old understanding of matter as a thing-in-itself should be replaced by a new, flexible, fluid, concept of matter, which is more or less manipulable. The matter is no more an occasion for object's taking place. On the other hand, it seems 3D printing technology is reduced to mere means; a simple intermediary, a copier of ideas. From that perspective the paper questioning the problem of action in ANT and search how action and interaction is distributed and how actors constitutes themselves as well as their actor-world.


2020 ◽  
Vol 05 (03) ◽  
pp. 2030002
Author(s):  
Chunze Yan ◽  
Gao Ma ◽  
Annan Chen ◽  
Ying Chen ◽  
Jiamin Wu ◽  
...  

Hydroxyapatite (HA) is a promising biomaterial for tissue engineering scaffolds due to its similar performance and composition to natural bone. However, the brittleness and poor toughness of pure HA limit its clinical application. Therefore, a lot of HA composites have been prepared to improve their mechanical performance. Fabricating complex and customized tissue engineering HA scaffolds have a very high requirement for manufacturing processes. It is difficult to fabricate ideal HA porous structures for artificial bone implants using traditional manufacturing processes, such as plasma spraying–sintering, and injection forming. Additive manufacturing (AM) could make three-dimensional physical parts with complex structures directly from computer-aided-design (CAD) models in a layer-by-layer way, and therefore show unique advantages in fabricating bone tissue engineering scaffolds with complex external shape and internal microporous structures. This paper reviews the state of the art for the preparation and AM process of HA and its composite materials, and raises the prospects for this research field.


Sign in / Sign up

Export Citation Format

Share Document