Muscle Force Prediction in OpenSim Using Skeleton Motion Optimization Results As Input Data

Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Ritwik Rakshit ◽  
James Yang

Abstract This paper describes an integrated approach to predict human leg and spine muscle forces during lifting by integration of a predictive skeletal model with OpenSim. The two-dimensional (2D) skeletal lifting motion is first predicted by using an inverse dynamics optimization method. Then, the prediction outputs, including joint angle profiles, ground reaction forces, and center of pressure, are incorporated in OpenSim biomechanics software to analyze muscle forces for lifting. Therefore, the integrated approach has predictive capability on musculoskeletal level. By using this method, we can predict and analyze muscles forces for heavy weight lifting motion which is difficult to simulate directly using a 3D musculoskeletal model.

Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

Abstract Lifting heavy weight is one of the main reasons for manual material handling related injuries which can be mitigated by determining the limiting lifting weight of a person. In this study, a 40 degrees of freedom (DOFs) spatial skeletal model was employed to predict the symmetric maximum weight lifting motion. The lifting problem was formulated as a multi-objective optimization (MOO) problem to minimize the dynamic effort and maximize the box weight. An inverse-dynamics-based optimization approach was used to determine the optimal lifting motion and the maximum lifting weight considering dynamic joint strength. The predicted lifting motion, ground reaction forces (GRFs), and maximum box weight were shown to match well with the experimental results. It was found that for the three-dimensional (3D) symmetric lifting the left and right GRFs were not same.


Author(s):  
Rahid Zaman ◽  
Yujiang Xiang ◽  
Jazmin Cruz ◽  
James Yang

In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.


2003 ◽  
Vol 358 (1437) ◽  
pp. 1493-1500 ◽  
Author(s):  
E. Otten

Connected multi–body systems exhibit notoriously complex behaviour when driven by external and internal forces and torques. The problem of reconstructing the internal forces and/or torques from the movements and known external forces is called the ‘inverse dynamics problem’, whereas calculating motion from known internal forces and/or torques and resulting reaction forces is called the ‘forward dynamics problem’. When stepping forward to cross the street, people use muscle forces that generate angular accelerations of their body segments and, by virtue of reaction forces from the street, a forward acceleration of the centre of mass of their body. Inverse dynamics calculations applied to a set of motion data from such an event can teach us how temporal patterns of joint torques were responsible for the observed motion. In forward dynamics calculations we may attempt to create motion from such temporal patterns, which is extremely difficult, because of the complex mechanical linkage along the chains forming the multi–body system. To understand, predict and sometimes control multi–body systems, we may want to have mathematical expressions for them. The Newton–Euler, Lagrangian and Featherstone approaches have their advantages and disadvantages. The simulation of collisions and the inclusion of muscle forces or other internal forces are discussed. Also, the possibility to perform a mixed inverse and forward dynamics calculation are dealt with. The use and limitations of these approaches form the conclusion.


2015 ◽  
Vol 137 (10) ◽  
Author(s):  
Lauranne Sins ◽  
Patrice Tétreault ◽  
Nicola Hagemeister ◽  
Natalia Nuño

Current musculoskeletal inverse dynamics shoulder models have two limitations to use in the context of nonconforming total shoulder arthroplasty (NC-TSA). First, the ball and socket glenohumeral (GH) joint simplification avoids any humeral head translations. Second, there is no contact at the GH joint to compute the contact area and the center of pressure (COP) between the two components of NC-TSA. In this paper, we adapted the AnyBody™ shoulder model by introducing humeral head translations and contact between the two components of an NC-TSA. Abduction in the scapular plane was considered. The main objective of this study was to adapt the AnyBody™ shoulder model to a NC-TSA context and to compare the results of our model (translations, COP, contact area, GH joint reaction forces (GH-JRFs), and muscular forces) with previous numerical, experimental, and clinical studies. Humeral head translations and contact were successfully introduced in our adapted shoulder model with strong support for our findings by previous studies.


2019 ◽  
Author(s):  
Todd J. Hullfish ◽  
Josh R. Baxter

AbstractNavigating stairs is a challenging task for many patient populations. Unfortunately, assessing lower extremity kinetics is not practical in many laboratories due in part to methodologic constraints. In this study, we designed, fabricated, and calibrated a staircase that accurately measured ground reaction forces applied to the second and fourth step. This implementation met several design criteria that included low-cost, ability to quickly move the staircase in and out of motion capture spaces, stable and safe staircase, and easily modifiable to meet the constraints of different lab layouts. We built the staircase as an outer and inner staircase assembly constructed using a modular aluminum framing system. Once positioned on our force plates that were embedded in the lab floor, we used an instrumented pole to apply known loads to a series of surface locations on the force plates and steps that were resting on top of the force plates. This calibration procedure reduced the center of pressure errors by approximately 50% for the embedded force plates and lower step (step 2) and 3-fold for the higher step (step 4). Next, we demonstrated that these steps can be integrated into a clinical gait analysis workflow. A single healthy-young adult navigated the stairs, the ground reaction forces were transformed into stair reaction forces, and these external loads were used to solve the inverse dynamics problem. This staircase provides other researchers with a new tool to assess stair navigation biomechanics. In this study, we provided the bill of materials, mechanical drawings, and calibration code necessary to modify and implement this staircase paradigm into other lab layouts.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1450
Author(s):  
Alfredo Ciniglio ◽  
Annamaria Guiotto ◽  
Fabiola Spolaor ◽  
Zimi Sawacha

The quantification of plantar pressure distribution is widely done in the diagnosis of lower limbs deformities, gait analysis, footwear design, and sport applications. To date, a number of pressure insole layouts have been proposed, with different configurations according to their applications. The goal of this study is to assess the validity of a 16-sensors (1.5 × 1.5 cm) pressure insole to detect plantar pressure distribution during different tasks in the clinic and sport domains. The data of 39 healthy adults, acquired with a Pedar-X® system (Novel GmbH, Munich, Germany) during walking, weight lifting, and drop landing, were used to simulate the insole. The sensors were distributed by considering the location of the peak pressure on all trials: 4 on the hindfoot, 3 on the midfoot, and 9 on the forefoot. The following variables were computed with both systems and compared by estimating the Root Mean Square Error (RMSE): Peak/Mean Pressure, Ground Reaction Force (GRF), Center of Pressure (COP), the distance between COP and the origin, the Contact Area. The lowest (0.61%) and highest (82.4%) RMSE values were detected during gait on the medial-lateral COP and the GRF, respectively. This approach could be used for testing different layouts on various applications prior to production.


Author(s):  
Hong Dong ◽  
Georges M. Fadel ◽  
Vincent Y. Blouin

In this paper, some new developments to the packing optimization method based on the rubber band analogy are presented. This method solves packing problems by simulating the physical movements of a set of objects wrapped by a rubber band in the case of two-dimensional problems or by a rubber balloon in the case of three-dimensional problems. The objects are subjected to elastic forces applied by the rubber band to their vertices as well as reaction forces when contacts between objects occur. Based on these forces, objects translate or rotate until maximum compactness is reached. To improve the compactness further, the method is enhanced by adding two new operators: volume relaxation and temporary retraction. These two operators allow temporary volume (elastic energy) increase to get potentially better packing results. The method is implemented and applied for three-dimensional arbitrary shape objects.


2018 ◽  
Vol 29 ◽  
pp. 34-45
Author(s):  
Van Tinh Nguyen ◽  
Daichi Kiuchi ◽  
Hiroshi Hasegawa

This paper addresses the development of a foot structure for 22-Degree of Freedom (DoF) humanoid robot. The goal of this research is to reduce the weight of the foot and enable the robot to walk steadily. The proposed foot structure is based on the consideration of cases where the ground reaction forces are set up in different situations. The optimal foot structure is a combination of all the topology optimization results. Additionally, a gait pattern is generated by an approximated optimization method based on Response Surface Model (RSM) and Improved Self-Adaptive Differential Evolution Algorithm (ISADE). The result is validated through dynamic simulation by a commercially available software called Adams (MSC software, USA) with the humanoid robot named KHR-3HV belonging to Kondo Kagaku company.


2014 ◽  
Vol 14 (06) ◽  
pp. 1440003
Author(s):  
KAP-SOO HAN ◽  
CHANG HO YU ◽  
MYOUNG-HWAN KO ◽  
TAE KYU KWON

The objective of the study was to investigate the effects of 3D stabilization exercises using a whole body tilt device on forces in the trunk, such as individual muscle forces and activation patterns, maximum muscle activities and spine loads. For this sake, a musculoskeletal (MS) model of the whole body was developed, and an inverse dynamics analysis was performed to predict the forces on the spine. An EMG measurement experiment was conducted to validate the muscle forces and activation patterns. The MS model was rotated and tilted in eight different directions: anterior (A), posterior (P), anterior right (AR), posterior right (PR), anterior left (AL), posterior left (PL), right (R) and left (L), replicating the directions of the 3D spine balance exercise device, as performed in the experiment. The anterior directions of the tilt primarily induced the activation of long and superficial back muscles and the posterior directions activated the front muscles. However, deep muscles, such as short muscles and multifidi, were activated in all directions of the tilt. The resultant joint forces in the right and left directions of the tilt were the least among the directions, but higher muscle activations and more diverse muscle recruitments than other positions were observed. Therefore, these directions of tilt may be suitable for the elderly and rehabilitation patients who require muscle strengthening with less spinal loads. In the present investigation, it was shown that 3D stabilization exercises could provide considerable muscle exercise effects with a minimum perturbation of structure. The results of this study can be used to provide safety guidelines for muscle exercises using this type of tilting device. Therefore, the proposed direction of tilt can be used to strengthen targeted muscles, depending on the patients' muscular condition.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242215
Author(s):  
A. M. van Leeuwen ◽  
J. H. van Dieën ◽  
A. Daffertshofer ◽  
S. M. Bruijn

Step-by-step foot placement control, relative to the center of mass (CoM) kinematic state, is generally considered a dominant mechanism for maintenance of gait stability. By adequate (mediolateral) positioning of the center of pressure with respect to the CoM, the ground reaction force generates a moment that prevents falling. In healthy individuals, foot placement is complemented mainly by ankle moment control ensuring stability. To evaluate possible compensatory relationships between step-by-step foot placement and complementary ankle moments, we investigated the degree of (active) foot placement control during steady-state walking, and under either foot placement-, or ankle moment constraints. Thirty healthy participants walked on a treadmill, while full-body kinematics, ground reaction forces and EMG activities were recorded. As a replication of earlier findings, we first showed step-by-step foot placement is associated with preceding CoM state and hip ab-/adductor activity during steady-state walking. Tight control of foot placement appears to be important at normal walking speed because there was a limited change in the degree of foot placement control despite the presence of a foot placement constraint. At slow speed, the degree of foot placement control decreased substantially, suggesting that tight control of foot placement is less essential when walking slowly. Step-by-step foot placement control was not tightened to compensate for constrained ankle moments. Instead compensation was achieved through increases in step width and stride frequency.


Sign in / Sign up

Export Citation Format

Share Document