Energy Savings From Electrification of Cooling System

Author(s):  
Ezemobi Ethelbert N. ◽  
Sanjarbek Ruzimov ◽  
Bonfitto Angelo ◽  
Andrea Tonoli ◽  
Amati Nicola

Abstract The cooling system is essential for creating suitable ambient for optimal performance of the engine and a healthy operating temperature to achieve high efficiency. Reaching the desired engine operating condition earlier will not only improve the life span of the engine but also improve the fuel efficiency and reduce environmental pollution. In conventional cooling systems, where the pump is always mechanically connected to the crankshaft, the optimum cooling efficiency of the engine is limited. In fact, the coolant circulates in the engine even when cooling is not desired, and this leads to extended engine warm-up time. Decoupling the pump from the crankshaft and driving the pump with electric motor, the cooling process can be controlled efficiently. The pump is then used only when required. A simple Pulse Width Modulation (PWM) controller with variable duty cycle has been adopted to impose the forced convention flow using a pump. The result of the simulation of the electrically driven pump reported here has been obtained for New European Drive Cycle (NEDC) and shows the possibility of saving about 3% of fuel during the homologation cycle compared to mechanically coupled pump. In addition, the engine operating temperature can be reached seven minutes (7mins) earlier in idling condition, corresponding to about 46.5% fuel saving with respect to the conventional cooling system.

2019 ◽  
Vol 103 ◽  
pp. 01001
Author(s):  
Jakub Kuś ◽  
Kyrylo Rudykh ◽  
Marcin Kobas ◽  
Maciej Żołądek ◽  
Szymon Sendłak ◽  
...  

Refrigeration systems are necessary for people living in hot climates. A majority of tropical and subtropical countries uses electrical power as a source of cooling. During the seasons of high ambient temperature there is a significant cooling load due to increased level of energy consumption. Cooling systems are therefore necessary in African countries in order to keep medications and food in safe conditions. Furthermore, there is a power shortage crisis due to the high demand for cooling. TRNSYS software allows to simulate a complete solar-powered absorption cooling system. A model used in an experiment includes PV modules making it advantageous over a conventional cooling system. PV modules of assumed area are sufficient to maintain the temperature inside cooling device below 6°C over the whole year.


2020 ◽  
Vol 38 (6) ◽  
pp. 2521-2540
Author(s):  
Juliana Isabel Saucedo Velázquez ◽  
Wilfrido Rivera Gómez Franco ◽  
Efraín Gómez-Arias ◽  
Geydy Gutiérrez Urueta

Conventional cooling systems consume a high percentage of the world’s total electricity generation. Because absorption cooling systems can be mainly operated with thermal energy, they can be used to reduce such percentage. In the present paper, an analysis is carried out to determine the cooling potential that can be obtained from a geothermal well in a location of Mexico by using a single-stage absorption cooling system. The analysis has been carried out taking into account the desired cooling temperature, the ambient temperature, and the temperatures at different depths of the wells for a typical day of every season of the year. The results showed that, for a fixed generation temperature, a maximum cooling potential as big as 71,594 GW, 70,649 GW, 71,164 GW, 70,859 GW could be obtained in Winter, Spring, Summer, and Autumn, respectively. Using the temperatures obtained from the well, for a fixed depth, the results show that higher values are obtained in spring and summer. From the analysis, it is clear that absorption systems operating with geothermal energy could be an excellent alternative to reduce the electricity consumed by conventional systems.


1983 ◽  
Vol 105 (2) ◽  
pp. 217-223
Author(s):  
M. L. Warren ◽  
M. Wahlig

Economic and thermal performance analyses of typical residential and commercial active solar cooling systems are used to determine cost goals for systems to be installed between the years 1986 and 2000. Market penetration for heating, ventilating, and air conditioning systems depends on payback period, which is related to the expected real return on investment. Postulating a market share for solar cooling systems increasing to 20 percent by the year 2000, payback and return on onvestment goals as a function of year of purchase are established. The incremental solar system cost goal must be equal to or less than the 20-year present value of future energy savings, based on thermal performance analysis, at the desired return on investment. Methods for achieving these cost goals and expected solar cooling system costs will be discussed.


Author(s):  
Anastasiya A. Frolova ◽  
◽  
Pavel I. Lukhmenev ◽  

Introduction. The air conditioning system is the main consumer of electricity inside office and shopping buildings. The coo­ling needs arise inside such buildings all over the year due to high amounts of heat emitted by people and equipment (computers, office equipment, cash registers), solar radiation (the envelopes of the majority of these buildings have continuous glazed facades) and sources of artificial lighting. A conventional cooling system has a compressor and condensers. The most important step towards an optimized and low-energy cooling system is the abandonment of compressor and condensers; in addition, the cold extracted from the outdoor air, is used in the system. This cooling technique is called an atmospheric co­oling system. The climatic features of Russia allow for a large-scale application of the cooling technology that uses natural cold. However, for a start, a decision was made to focus on a central region of the Russian Federation, namely, Moscow, rather than any northern areas of the country. Materials and methods. The problem is solved by the calculation method applied to the case of a 35-storey office building in Moscow. Various outdoor temperature options were considered as the bases for a transition to an atmospheric cooling system. The co-authors also compare different installation options for dry coolers, which in turn affect the routing length of refrigeration circuits. The annual demand for cold is calculated for all analyzed options. Results. Some results are presented in the form of tables of annual energy consumption by different types of air cooling systems. Conclusions. The co-authors have found that the location of dry coolers strongly affects the power consumption by a co­oling system. Power consumption by cooling systems was analyzed, and it was found out that transition to machine refrigeration at the higher outdoor temperature of +8 °C is more efficient from the standpoint of energy efficiency than the same transition at +5 and 0 °C.


2021 ◽  
Vol 945 (1) ◽  
pp. 012016
Author(s):  
Muhammad Arif bin Azahari ◽  
Chua Yaw Long ◽  
Koh Yit Yan

Abstract This paper analyses the difference in terms of performance of passive cooling systems for photovoltaic (PV) modules. The objective of this paper is to identify which passive cooling systems offers the best results in reducing the operating temperature and improving the generation of output power. The performance of photovoltaic (PV) module will gradually decrease as the operating temperature increases. The energy from the sun’s photons are not enough to knock out the electrons from the atom to generate more electricity. That being the case, two passive cooling systems is developed which is the cotton wick structures with water and aluminium fins were attached to the back side of the photovoltaic (PV) module. The cotton wick structures with water utilises the capillary action of the water to extract excess heat from the module while the aluminium fins act as a heat sink that can remove heat from module to the adjacent air. Results showed that the cooling systems managed to enhance the output power by an average of 3.94% for the module with cotton wick structures with water while an average of 2.67% increment for the module under aluminium fin mounted as the cooling system.


2012 ◽  
Vol 608-609 ◽  
pp. 143-150 ◽  
Author(s):  
Qi Fen Li ◽  
Tao Li ◽  
Cui Cui Pan ◽  
Zhi Tian Zhou ◽  
Wei Dong Sun

With characteristics of rapid start-up, small heat resistance,uniform temperature and strong heat transfer ability, heat pipe has been used as a facility in cooling system of concentration photovoltaic system. Through numerical calculation and analysis, heat transfer characteristics of the cooling systems are carried out in this paper. Focusing on research of conventional rectangular fin and small fin fixed on cooling systems, and the heat pipe radiator that may adopted, the high-efficiency cooling system and method which are matched with the requirement of high energy flow density and notuniformity temperature are discussed. Finally, optimization design of the cooling system structure is suggested in the paper.


2019 ◽  
Vol 11 (21) ◽  
pp. 91-101
Author(s):  
Falah A-H. Mutlak

The systems cooling hybrid solar uses solar collector to convert solar energy into the source of heat for roasting Refrigerant outside of the compressor and this process helps in the transformation of Refrigerant from the gas to a liquid state in two-thirds the top of the condenser instead of two-thirds the bottom of the condenser as in Conventional cooling systems and this in turn reduces the energy necessary to lead the process of cooling. The system cooling hybrid use with a capacity of 1 ton and Refrigerant type R22 and the value of current drawn by the system limits (3.9-4.2A), the same value of electric current calculated by the system are  Conventional  within this atmosphere of Iraq, and after taking different readings of the temperatures and pressure to several points in the system's found that the Refrigerant when it comes out of the compressor, it loses part of the temperature of the water in the solar collector through a heat exchanger while the literature published in accordance with the manufacturers that the solar collector, a kind of vacuum tubes contributes to raise the pressure and temperature of the fluid cooler to reduce the consumption of energy spent on compressor. Therefore, the system described by the current not fit for domestic use within the Iraqi environmental conditions.


Author(s):  
А.В. Фомин ◽  
Е.В. Фомин

В статье представлены результаты исследования эффективности работы системы охлаждения корабельного оборудования и предложены конструктивные решения, позволяющие модернизировать данную систему. В настоящее время, для обеспечения нормальной работы корабельного оборудования, применяются системы охлаждения. В корабельных энергетических установках распространены системы водяного охлаждения из-за целого ряда преимуществ. К ним относится и высокая эффективность теплоотвода, и меньшее влияние внешней среды, а также более надежный пуск и возможность использования энергии отводимого тепла для других нужд. Одним из основных элементов в таких системах является расширительный бак гравитационного типа, обеспечивающий правильную циркуляцию дистиллированной воды во внутреннем контуре и расположенный в верхней точке системы. Однако практика испытаний и эксплуатации показала, что есть и серьезный недостаток в таком расположении бака – в случаи его перелива или разрыва может пострадать дорогостоящее оборудование, расположенное ниже. В связи с этим, определены направления по совершенствованию системы водяного охлаждения корабельного оборудования, которые связаны с применением расширительного бака мембранного типа и использования воздухоудаляющих клапанов. The article presents the results of a study of the efficiency of the cooling system of ship equipment and offers design solutions that allow to modernize this system. Currently, to ensure the normal operation of ship's equipment, cooling systems are used. Water cooling systems are common in ship power plants due to a number of advantages. These include high efficiency of heat removal, less influence of the external environment, as well as more reliable start-up and the ability to use the energy of the heat being withdrawn for other needs. One of the main elements in such systems is a gravity-type expansion tank that ensures proper circulation of distilled water in the internal circuit and is located at the top of the system. However, the practice of testing and operation has shown that there is a serious drawback in this arrangement of the tank – in cases of overflow or rupture, expensive equipment located below may suffer. In this regard, the directions for improving the water cooling system of ship equipment, which are associated with the use of an expansion tank of the membrane type and the use of air-removing valves, have been identified.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1836 ◽  
Author(s):  
Kwon Park ◽  
Seiyong Kim

Recently, Korea has become increasingly interested in unused, but possibly useful energy resources, due to the world-wide controversy over nuclear power and limitations in renewable energy production. Among these unused resources, the water that is produced in our surroundings is available as a potential energy source for heating, cooling and domestic hot water. This water is relatively stable on the supply side, available as a high-efficiency source in all seasons, and is continuously replenished without polluting the environment. This paper analyses the energy savings generated based on the actual use of a sustainable heating and cooling system that operates using the water escaping from a nearby building. The results indicate the value of protecting the environment as well as reducing energy consumption and associated costs.


Author(s):  
Huifang Deng ◽  
Robert F. Boehm

The southwestern US is an ideal location for solar power plants due to its abundant solar resource, while there is a difficulty in implementing wet cooling systems due to the shortage of water in this region. Dry cooling could be an excellent solution for this, if it could achieve a high efficiency and low cost as wet cooling. Some dry cooling systems are currently in operation, and investigations of their performance have been reported in the literature. This paper looks into the limits to the power production implicit in dry cooling, assuming that improvements might be made to the system components. Use of higher performance heat transfer surfaces is one such possible improvement. We have developed a model of a fairly typical, but simplified, solar trough plant, and simulated thermodynamic performance of this with the software Gatecycle. We have examined the power generation and cycle efficiency of the plant for the Las Vegas vicinity with conventional wet cooling and conventional dry cooling cases considered separately using this software. TMY2 data are used for this location for this purpose. Similarly, the same studies are carried out for “ideal” cooling systems as a comparison. We assumed that in the ideal dry cooling system, the condensing temperature is the ambient dry bulb temperature, and in the ideal wet cooling system, it is the ambient wet bulb temperature. It turned out that the ideal dry cooling system would significantly outperform the conventional wet cooling system, indicating the possibility of the dry cooling system being able to achieve increased performance levels with component improvements.


Sign in / Sign up

Export Citation Format

Share Document