On the Structural Constraint and Motion of 3-PRS Parallel Kinematic Machines

2021 ◽  
Author(s):  
Hassen Nigatu ◽  
Yun Ho Choi ◽  
Doik Kim

Abstract This paper presents a consistent analytic kinematic formulation of the 3-PRS parallel manipulator (PM) with a parasitic motion by embedding the velocity level structural constraint equation into the motion expression. Inverse rate kinematics (IRK) is solved with a simple constraint compatible velocity profile, which is obtained by projecting the instantaneous restriction space onto the motion space. Moreover, the systematic method to reveal the parasitic motion is introduced. Thus, the parasitic terms are automatically identified from the main motions. Unlike the usual approach, this study does not consider any explicit parasitic motion expression. Consequently, the derivation of constraint compatible input velocity, which comprises the parasitic term, is simplified. To incorporate the parasitic motion into the task velocity, constraint Jacobian of the manipulator is analytically obtained first. The manipulator Jacobian is extended to incorporate the passive joint’s information apart from the active joints and structural constraint. Hence, the dimension of the Jacobian matrix used to solve IRK is 9 × 6. The validity of the IRK is proved by the Bordered Gramian based forward rate kinematics (FRK). Then, an accurate numerical integration, RK4, is applied to the joint velocity of IRK to obtain the manipulator’s joint values. Consequently, the moving plate’s pose is obtained via forward position kinematics computed using integrated active and passive joint values for validation. The projection matrix used to get compatible constraint motion adjusts our input velocity and makes it compatible with the structural constraint policy, and the parasitic motion is embedded easily. Thus, an explicit formulation of the parasitic motion equation is not required, as the usual practice. Finally, the study presented numerical simulations to show the validity of the outlined resolutions. This paper’s result and analysis can be uniformly applied to other parallel manipulators with less than 6 DoFs.

2021 ◽  
Vol 11 (10) ◽  
pp. 4690
Author(s):  
Hassen Nigatu ◽  
Doik Kim

This paper presents a velocity-level approach to optimizing the parasitic motion of 3-degrees of freedom (DoFs) parallel manipulators. To achieve this objective, we first systematically derive an analytical velocity-level parasitic motion equation as a primary step for the optimization. The paper utilizes an analytic structural constraint equation that describes the manipulator’s restriction space to formulate the parasitic motion equation via the task variable coupling relation. Then, the relevant geometric variables are identified from the analytic coupling equation. The Quasi-Newton method is used for the direction-specific minimization, i.e., optimizing either the x-axis or y-axis parasitic motion. The pattern-search algorithm is applied to optimize all parasitic terms from the workspace. The proposed approach equivalently describes the 3-PhRS, 3-PvRS, 3RPS manipulators. Moreover, other manipulators within a similar category can be equivalently expressed by the proposed method. Finally, the paper presents the resulting optimum configurations and numerical simulations to demonstrate the approach.


Author(s):  
Grigore Gogu

The paper presents singularity-free fully-isotropic T1R2-type parallel manipulators (PMs) with three degrees of freedom. The mobile platform has one independent translation (T1) and two rotations (R2). A method is proposed for structural synthesis of fully-isotropic T1R2-type PMs based on the theory of linear transformations. A one-to-one correspondence exists between the actuated joint velocity space and the external velocity space of the moving platform. The Jacobian matrix mapping the two vector spaces of fully-isotropic T1R2-type PMs presented in this paper is the 3x3 identity matrix throughout the entire workspace. The condition number and the determinant of the Jacobian matrix being equal to one, the manipulator performs very well with regard to force and motion transmission capabilities. As far as we are aware, this paper presents for the first time in the literature solutions of singularity-free T1R2-type PMs with decoupled an uncoupled motions, along with the fully-isotropic solutions.


Robotica ◽  
2009 ◽  
Vol 27 (7) ◽  
pp. 971-980 ◽  
Author(s):  
Yi Lu ◽  
Yan Shi ◽  
Jianping Yu

SUMMARYThis paper proposes an approach for solving the velocity and acceleration of the limited-dof (dof n < 6) parallel kinematic machines with linear active legs by means of translational/rotational Jacobian and Hessian matrices. First, based on the established or derived constraint and displacement equations, the translational/rotational Jacobian and Hessian matrices are derived. Second, the formulae for solving inverse/forward velocities and accelerations are derived from translational and rotational Jacobian/Hessian matrices. Third, a 2SPR + UPU PKM and a 2SPS + RPRR PKM are illustrated for explaining how to use this method. This approach is simple because it needs neither to eliminate 6-n rows of an n × 6 Jacobian matrix nor to determine the screw or pose of the constrained wrench.


2017 ◽  
Vol 9 (6) ◽  
Author(s):  
Leila Notash

For under-constrained and redundant parallel manipulators, the actuator inputs are studied with bounded variations in parameters and data. Problem is formulated within the context of force analysis. Discrete and analytical methods for interval linear systems are presented, categorized, and implemented to identify the solution set, as well as the minimum 2-norm least-squares solution set. The notions of parameter dependency and solution subsets are considered. The hyperplanes that bound the solution in each orthant characterize the solution set of manipulators. While the parameterized form of the interval entries of the Jacobian matrix and wrench produce the minimum 2-norm least-squares solution for the under-constrained and over-constrained systems of real matrices and vectors within the interval Jacobian matrix and wrench vector, respectively. Example manipulators are used to present the application of methods for identifying the solution and minimum norm solution sets for actuator forces/torques.


Author(s):  
Madusudanan Sathia Narayanan ◽  
Sourish Chakravarty ◽  
Hrishi Shah ◽  
Venkat N. Krovi

This paper examines the symbolic kinematic modeling of a general 6-P-U-S (prismatic-universal-spherical) parallel kinematic manipulator (PKM). The base location of actuators has been previously shown to lead to: (i) reduction of the (motor) weight carried by the legs; (ii) elimination of the actuation transmission requirement (through intermediary joints as in the case of the Stewart-Gough platform); and (iii) most-importantly absorption of reaction-forces by the ground. We focus on using the symbolic equations to derive the conditions for type I and II singularities of this class of parallel manipulators. Based on these conditions, this system of equations is specialized to a specific configuration of the platform that has superior structural design and comparatively minimal singularities within its workspace. A series of studies were conducted to investigate the quality of workspace as well as estimate the actuation requirements for a unit payload carried over their workspace using the symbolic Jacobian model for this specialized configuration.


Author(s):  
Richard Stamper ◽  
Lung-Wen Tsai

Abstract The dynamics of a parallel manipulator with three translational degrees of freedom are considered. Two models are developed to characterize the dynamics of the manipulator. The first is a traditional Lagrangian based model, and is presented to provide a basis of comparison for the second approach. The second model is based on a simplified Newton-Euler formulation. This method takes advantage of the kinematic structure of this type of parallel manipulator that allows the actuators to be mounted directly on the base. Accordingly, the dynamics of the manipulator is dominated by the mass of the moving platform, end-effector, and payload rather than the mass of the actuators. This paper suggests a new method to approach the dynamics of parallel manipulators that takes advantage of this characteristic. Using this method the forces that define the motion of moving platform are mapped to the actuators using the Jacobian matrix, allowing a simplified Newton-Euler approach to be applied. This second method offers the advantage of characterizing the dynamics of the manipulator nearly as well as the Lagrangian approach while being less computationally intensive. A numerical example is presented to illustrate the close agreement between the two models.


Author(s):  
Clément M. Gosselin ◽  
Jaouad Sefrioui

Abstract In this paper, an algorithm for the determination of the singularity loci of spherical three-degree-of-freedom parallel manipulators with prismatic atuators is presented. These singularity loci, which are obtained as curves or surfaces in the Cartesian space, are of great interest in the context of kinematic design. Indeed, it has been shown elsewhere that parallel manipulators lead to a special type of singularity which is located inside the Cartesian workspace and for which the end-effector becomes uncontrollable. It is therfore important to be able to identify the configurations associated with theses singularities. The algorithm presented is based on analytical expressions of the determinant of a Jacobian matrix, a quantity that is known to vanish in the singular configurations. A general spherical three-degree-of-freedom parallel manipulator with prismatic actuators is first studied. Then, several particular designs are investigated. For each case, an analytical expression of the singularity locus is derived. A graphical representation in the Cartesian space is then obtained.


Robotica ◽  
2009 ◽  
Vol 28 (6) ◽  
pp. 909-917 ◽  
Author(s):  
Jaime Gallardo-Alvarado ◽  
Horacio Orozco-Mendoza ◽  
José M. Rico-Martínez

SUMMARYIn this work a new nonoverconstrained redundant decoupled robot, free of compound joints, formed from three parallel manipulators, with two moving platforms and provided with six active limbs connected to the fixed platform, called LinceJJP, is presented. Interesting applications such as multi-axis machine tools with parallel kinematic architectures, solar panels, radar antennas, and telescopes are available for this novel spatial mechanism.


2004 ◽  
Vol 126 (6) ◽  
pp. 959-968 ◽  
Author(s):  
Mahir Hassan ◽  
Leila Notash

In this study, the effect of active joint failure on the mobility, velocity, and static force of parallel robot manipulators is investigated. Two catastrophic active joint failure types are considered: joint jam and actuator force loss. To investigate the effect of failure on mobility, the Gru¨bler’s mobility equation is modified to take into account the kinematic constraints imposed by various branches in the manipulator. In the case of joint jam, the manipulator loses the ability to move and apply force in a specific portion of its task space; while in the case of actuator force loss, the manipulator gains an unconstrained motion in a specific portion of the task space in which an externally applied force cannot be resisted by the actuator forces. The effect of joint jam and actuator force loss on the velocity and on the force capabilities of parallel manipulators is investigated by examining the change in the Jacobian matrix, its inverse, and transposes. It is shown that the reduced velocity and force capabilities after joint jam and loss of actuator force could be determined using the null space vectors of the transpose of the Jacobian matrix and its inverse. Computer simulation is conducted to demonstrate the application of the developed methodology in determining the post-failure trajectory of a 3-3 six-degree-of-freedom Stewart-Gough manipulator, when encountering active joint jam and actuator force loss.


Robotica ◽  
2015 ◽  
Vol 35 (3) ◽  
pp. 511-520 ◽  
Author(s):  
Kefei Wen ◽  
TaeWon Seo ◽  
Jeh Won Lee

SUMMARYSingular configurations of parallel manipulators (PMs) are special poses in which the manipulators cannot maintain their inherent infinite rigidity. These configurations are very important because they prevent the manipulator from being controlled properly, or the manipulator could be damaged. A geometric approach is introduced to identify singular conditions of planar parallel manipulators (PPMs) in this paper. The approach is based on screw theory, Grassmann–Cayley Algebra (GCA), and the static Jacobian matrix. The static Jacobian can be obtained more easily than the kinematic ones in PPMs. The Jacobian is expressed and analyzed by the join and meet operations of GCA. The singular configurations can be divided into three classes. This approach is applied to ten types of common PPMs consisting of three identical legs with one actuated joint and two passive joints.


Sign in / Sign up

Export Citation Format

Share Document