Computational Modeling for the Dynamic Simulation of Paper and its Application to Some Paper Handling Problems

Author(s):  
Shinya Sekimoto ◽  
Makoto Ukai

Abstract This paper deals with the paper handling problems in highspeed labor saving machines. Non-linear finite element analyses are done for a lightweight and flexible plate or beam leaping from a sliding constraint and colliding against a rigid wall. The fluid force of air and the paper elasticity are taken into account. The elastic property of paper is identified by comparing the “self-bending test” and the finite element analysis. The effect of geometrical stiffness with an initial deformation is studied. The change of the flying orbit is shown with flat paper and geometrically stiffened paper. The behavior of paper after colliding against a rigid wall is also simulated with the parameters of the paper velocity and the friction coefficient between the paper and the wall. The simulation results agree well with the designers’ experiences and help the designers design new machines with higher speed.

Author(s):  
Malcolm H. Ray

A method of comparing two acceleration time histories to determine whether they describe similar physical events is described. The method can be used to assess the repeatability of full-scale crash tests and it can also be used as a criterion for assessing how well a finite-element analysis of a collision event simulates a corresponding full-scale crash test. The method is used to compare a series of six identical crash tests and then is used to compare several finite-element analyses with full-scale crash test results.


2013 ◽  
Vol 367 ◽  
pp. 122-125
Author(s):  
Guang Xin Wang ◽  
Xiang Shun Bu ◽  
Lin Jie Li ◽  
Li Li Zhu

As one of the most important load-bearing parts, coupler knuckle has a direct relationship with the safety in operation and reliability of the freight trains. A new forged coupler knuckle is made in order to meet the challenge to export ore train to Australia. Using the finite element technique, the stress characteristics of forged coupler knuckle under 1225kN load in tension and 1500kN compression load are evaluated. Simplify the load and boundary condition depend on the real working situation, the numerical simulation results coincide with experimental data.


2007 ◽  
Vol 546-549 ◽  
pp. 1563-1566
Author(s):  
Min Li ◽  
Bao Yan Zhang ◽  
Xiang Bao Chen

Unsymmetric composite laminates were benefit to reducing the structure weight of some aircrafts. However, the cured unsymmetric laminates showed distortion at room temperature. Therefore, predicting the deformation before using the unsymmetrical composite is very important. In this study an attempt was made to predict the shapes of some unsymmetric cross-ply laminates using the finite element analysis (FEA). The bilinear shell-element was adopted in the process. Then the simulation results were compared with the experimental data. The studies we had performed showed that the theoretical calculation agreed well with the experimental results, the predicted shapes were similar to the real laminates, and the difference between the calculated maximum deflections and the experimental data were less than 5%. Hence the FEA method was suitable for predicting the warpage of unsymmetric laminates. The error analysis showed that the simulation results were very sensitive to the lamina thickness, 2 α and (T.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
Zhijun Wu ◽  
Sayed A. Nassar ◽  
Xianjie Yang

This study investigates the effect of the pilot hole size, implant depth, synthetic bone density, and screw size on the pullout strength of the self-tapping screw using analytical, finite element, and experimental methodologies. Stress distribution and failure propagation mode around the implant thread zone are also investigated. Based on the finite element analysis (FEA) results, an analytical model for the pullout strength of the self-tapping screw is constructed in terms of the (synthetic) bone mechanical properties, screw size, and the implant depth. The pullout performance of self-tapping screws is discussed. Results from the analytical and finite element models are experimentally validated.


2013 ◽  
Vol 706-708 ◽  
pp. 1140-1145
Author(s):  
Fang Liu ◽  
Wen Ming Cheng ◽  
Yi Zhou

Since the posture of portable exoskeleton is consistent with human motion and each joint degree of freedom is same, on the basis of DOF coupling in portable exoskeleton, the finite element analysis of the mechanical structure in portable exoskeleton has been calculated. According to the anthropomorphic mechanism design method, the universal joint structure has been used to meet the requirements of degrees of freedom in the mechanical structure of the exoskeleton; using the Hydraulic cylinder to simulate the contraction or stretch of human muscle, and the three-dimensional model of the exoskeleton mechanical systems has been created with the Solidworks software; selecting Human CAD software and setting the parameters of the movement of the human body model, the variations of the various joints can be obtained; using the Parasolid as the standard format for data transfer between the two software Solidworks and ANSYS, the finite element analysis model was established, and according to the principle of coupling, the three translational DOF and two rotating DOF was coupled, besides through both legs vertical standing, one knee kneeling, and one leg vertical standing three conditions, the exoskeleton strength was analyzed. The simulation results show that under the three conditions, a concentrated stress all has been found in the exoskeleton structure, besides the concentrated stresses all have been obtained in the cross-section changing site or the junction of the two components, which stress values exceeded the allowable stress values of the aluminum alloy material, so the suggestions for improvement of the structure are put forward in the article; at the same time, the simulation results provide a numerical basis for the optimization of the portable exoskeleton structure.


2012 ◽  
Vol 472-475 ◽  
pp. 732-735 ◽  
Author(s):  
Jung Han Song ◽  
Hye Jin Lee ◽  
Jong Sup Lee ◽  
Geun An Lee ◽  
Jeanho Park ◽  
...  

In this paper, finite element analyses of thread rolling process for the micro-sized screw with the diameter of 800 μm and the thread pitch of 200 μm are firstly carried out. For the finite element analysis of the thread rolling process, hardening behavior of SUS has been estimated by the compression and tensile tests. And then, process design has been conducted with the aid of simulations and the prototype of the micro screw finally has been fabricated. In order to verify the CAE based process design for micro-sized screws, the deformed shape and dimensions obtained from the CAE are compared with those from the experiment. The deformed shapes of the pitch part and the top part of threads can be demonstrated the feature of experimental result.


2011 ◽  
Vol 422 ◽  
pp. 438-442
Author(s):  
Mei Fa Huang ◽  
Wei Zhao Luo ◽  
Guang Qian

Propeller is one of the critical parts in garbage powder mixer and affect significantly to the performance. In order to obtain a more reasonable structure, force analysis and stress analysis is carrier out for the propeller based on the actual working condition. Optimal design for the propeller is implemented by the results of stress analysis. To verify the rationality and feasibility of this mechanism, the finite element analysis for the propeller is performed by using the ANASYS software. The simulation results show that the maximum stress of the propeller is on the joint of blade and rod. The optimized propeller is satisfied with the strength requirements.


2019 ◽  
Vol 4 (3) ◽  
pp. 176-182
Author(s):  
Hervice Kouefouet ◽  
Jeanne Sandrine Takam Mabekou ◽  
Joseph Albert Fosting Mukam ◽  
Pierre Kisito Talla ◽  
Rostand Pitti Moutou

This work deals with the numerical simulation on bending test to characterize two Cameroonian hardwoods under mode I and II loading for different crack lengths. The finite element analysis for fracture in orthotropic medium is developed. The algorithm of fracture is introduced in a finite element software Cast3M. According to the Mtheta method, the calculation of the stress intensity factors and the energy release rate for pure mode I and II fracture are deduced using a SENB (Single Edge Notch Bending) specimen. The path independence of Mθ-method on the specimen is confirmed.


2012 ◽  
Vol 229-231 ◽  
pp. 919-922
Author(s):  
Bao Dong Bai ◽  
Guo Hui Yang ◽  
Bing Yin Qu ◽  
Jian Zhang

In this paper, the modal analysis was carried out on the core and cavity of a 160KVA dry-type transformer based on the finite element analysis software of ANSYS. And the simulation results of the natural frequencies and modal shapes were obtained, which provided a theoretical guidance to the design of the transformer structure, and were meaningful to reduce the vibration and noise level of the transformer.


2019 ◽  
Vol 944 ◽  
pp. 867-872
Author(s):  
Lin Wang ◽  
Yu Ran Fan ◽  
Peng Song

The pressure capacity of reinforced thermoplastic pipe was studied by the finite element analysis and experimental study using Φ100 reinforced thermoplastic pipes. The simulation results illustrated that the failure mode of reinforced thermoplastic pipe under internal pressure was the break of glass fiber belt in structural layer. Moreover, the simulated burst pressure fitted well with the experimental result, the small deviation between two results may be resulted from the process defects of RTP.


Sign in / Sign up

Export Citation Format

Share Document