scholarly journals Design and Analysis of a Symmetric Articulated Single-Port Laparoscopic Surgical Device

Author(s):  
Rohan Katoch ◽  
Boao Xia ◽  
Yoshinori Yamakawa ◽  
Jun Ueda ◽  
Hiroshi Honda

Laparoscopic surgery is a practice of minimally invasive surgery (MIS) performed in the abdominal area. Prior to surgery, instead of exposing the target region to air as in a typical conventional open surgery, “key holes” are opened for positioning ports, through which surgical tools (e.g. laparoscope, needle drivers, etc.) are inserted. MIS therefore minimizes trauma and reduces the risk of hemorrhaging and infection. MIS also generates economic benefits such as shorter hospitalization time for patients and better utilization of operating rooms and wards for hospitals. MIS procedures, however, require extra dexterity from surgeons: they must use instruments with little to none haptic feedback to remotely manipulate tissue within a limited range of motion, assisted by an indirect view from laparoscope. Such unintuitive operations not only require additional training, but also increase the risk of medical errors. Thus, the development of novel surgical devices that can provide a better operating experience will allow surgeons to deliver safer and more effective surgeries. At the advent of MIS only rigid straight laparoscopic instruments were available. Therefore, surgeons used multiple incisions to position the tools and achieve triangulation. In single port laparoscopic surgeries (SPLS), only one incision is made for positioning a port. Two rigid straight instruments inserted through one incision cannot provide sufficient triangulation for operations. Rigid bent, or articulated, instruments can achieve triangulation, but the tools must intersect at a point. The mapping to control the end-effector, therefore, must be inverted such that the right hand controls the left end-effector, and vice versa [1]. Given this inverted mapping, surgeons need to undergo extra training to intuitively control the end-effector, and greater attention is required toward operating the device, which can potentially detract from the ability of surgeons to focus on procedures. The disadvantage of an inverted mapping can be overcome by providing additional mobility with flexible tools and actuating structures [2]. For example, Transenterix has developed a flexible laparoscopic device which utilizes a cable-driven system for articulation of the end-effectors. However, using flexible elements as the driving mechanism can result in new problems such as diminished force feedback [3]. In 2015, a novel design of an articulated single port laparoscopic device was presented with 6 degrees of freedom (DOF). The system provides intuitive control, accurate force feedback, and sufficient manipulation for laparoscopic procedures. The design proposed in this paper keeps much of the functional features in the previous model, including 1:1 mapping and force feedback, while incorporating flexible hydraulic graspers. The articulated mechanism was redesigned to have a symmetrical structure, which is more intuitive to control and provides better operating angles for surgeons. Joint structures are redesigned for enhanced robustness and misalignment prevention. Kinematic analysis is presented for the proposed mechanisms, which is used to determine the manipulator workspace.

Author(s):  
Jean-Claude Leon ◽  
Thomas Dupeux ◽  
Jean-Rémy Chardonnet ◽  
Jérôme Perret

The simulation of grasping operations in virtual reality (VR) is required for many applications, especially in the domain of industrial product design, but it is very difficult to achieve without any haptic feedback. Force feedback on the fingers can be provided by a hand exoskeleton, but such a device is very complex, invasive, and costly. In this paper, we present a new device, called HaptiHand, which provides position and force input as well as haptic output for four fingers in a noninvasive way, and is mounted on a standard force-feedback arm. The device incorporates four independent modules, one for each finger, inside an ergonomic shape, allowing the user to generate a wide range of virtual hand configurations to grasp naturally an object. It is also possible to reconfigure the virtual finger positions when holding an object. The paper explains how the device is used to control a virtual hand in order to perform dexterous grasping operations. The structure of the HaptiHand is described through the major technical solutions required and tests of key functions serve as validation process for some key requirements. Also, an effective grasping task illustrates some capabilities of the HaptiHand.


Author(s):  
Andrew R. Theriault ◽  
Mark L. Nagurka ◽  
Michelle J. Johnson

TheraDrive is an effective system for post-stroke upper extremity rehabilitation. This system uses off-the-shelf computer gaming wheels with force feedback to help reduce motor impairment and improve function in the arms of stroke survivors. Preliminary results show that the TheraDrive system lacks a robust mechanical linkage that can withstand the large forces exerted by patients, and it lacks a patient-specific adaptive controller to deliver personalized therapy. It is also not capable of delivering effective therapy to severely low-functioning patients. A new low-cost, high-force haptic robot with a single degree of freedom has been developed to address these concerns. The resulting TheraDrive consists of an actuated hand crank with a compliant transmission. Actuation is provided by a brushed DC motor, geared to output up to 23 kgf at the end effector. To enable a human to interact with this system safely, a special compliant element was developed to double as a failsafe torque limiter. A set of strain gauges in the handle of the crank are used to determine the interaction forces between human and robot for use by the robot’s impedance controller. The impedance controller is used to render a one-dimensional force field that attracts or repels the end effector from a moving target point that the human must track during therapy exercises. As exercises are performed, an adaptive controller monitors patient performance and adjusts the force field accordingly. This allows the robot to compensate for gravity, variable mechanical advantage, limited range of motion, and other factors. More importantly, the adaptive controller ensures that exercises are difficult but doable, which is important for maintaining patient motivation. Experiments with a computer model of human and robot show the adaptive controller’s ability to maintain difficulty of exercises after a period of initial calibration.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 410
Author(s):  
Dan Liu ◽  
Xiaoming Liu ◽  
Pengyun Li ◽  
Xiaoqing Tang ◽  
Masaru Kojima ◽  
...  

In recent years, micromanipulators have provided the ability to interact with micro-objects in industrial and biomedical fields. However, traditional manipulators still encounter challenges in gaining the force feedback at the micro-scale. In this paper, we present a micronewton force-controlled two-finger microhand with a soft magnetic end-effector for stable grasping. In this system, a homemade electromagnet was used as the driving device to execute micro-objects manipulation. There were two soft end-effectors with diameters of 300 μm. One was a fixed end-effector that was only made of hydrogel, and the other one was a magnetic end-effector that contained a uniform mixture of polydimethylsiloxane (PDMS) and paramagnetic particles. The magnetic force on the soft magnetic end-effector was calibrated using an atomic force microscopy (AFM) probe. The performance tests demonstrated that the magnetically driven soft microhand had a grasping range of 0–260 μm, which allowed a clamping force with a resolution of 0.48 μN. The stable grasping capability of the magnetically driven soft microhand was validated by grasping different sized microbeads, transport under different velocities, and assembly of microbeads. The proposed system enables force-controlled manipulation, and we believe it has great potential in biological and industrial micromanipulation.


2000 ◽  
Author(s):  
Michael L. Turner ◽  
Ryan P. Findley ◽  
Weston B. Griffin ◽  
Mark R. Cutkosky ◽  
Daniel H. Gomez

Abstract This paper describes the development of a system for dexterous telemanipulation and presents the results of tests involving simple manipulation tasks. The user wears an instrumented glove augmented with an arm-grounded haptic feedback apparatus. A linkage attached to the user’s wrist measures gross motions of the arm. The movements of the user are transferred to a two fingered dexterous robot hand mounted on the end of a 4-DOF industrial robot arm. Forces measured at the robot fingers can be transmitted back to the user via the haptic feedback apparatus. The results obtained in block-stacking and object-rolling experiments indicate that the addition of force feedback to the user did not improve the speed of task execution. In fact, in some cases the presence of incomplete force information is detrimental to performance speed compared to no force information. There are indications that the presence of force feedback did aid in task learning.


2018 ◽  
Vol 35 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Mustufa H. Abidi ◽  
Abdulrahman M. Al-Ahmari ◽  
Ali Ahmad ◽  
Saber Darmoul ◽  
Wadea Ameen

AbstractThe design and verification of assembly operations is essential for planning product production operations. Recently, virtual prototyping has witnessed tremendous progress, and has reached a stage where current environments enable rich and multi-modal interaction between designers and models through stereoscopic visuals, surround sound, and haptic feedback. The benefits of building and using Virtual Reality (VR) models in assembly process verification are discussed in this paper. In this paper, we present the virtual assembly (VA) of an aircraft turbine engine. The assembly parts and sequences are explained using a virtual reality design system. The system enables stereoscopic visuals, surround sounds, and ample and intuitive interaction with developed models. A special software architecture is suggested to describe the assembly parts and assembly sequence in VR. A collision detection mechanism is employed that provides visual feedback to check the interference between components. The system is tested for virtual prototype and assembly sequencing of a turbine engine. We show that the developed system is comprehensive in terms of VR feedback mechanisms, which include visual, auditory, tactile, as well as force feedback. The system is shown to be effective and efficient for validating the design of assembly, part design, and operations planning.


2005 ◽  
Vol 128 (2) ◽  
pp. 216-226 ◽  
Author(s):  
M. A. Vitrani ◽  
J. Nikitczuk ◽  
G. Morel ◽  
C. Mavroidis ◽  
B. Weinberg

Force-feedback mechanisms have been designed to simplify and enhance the human-vehicle interface. The increase in secondary controls within vehicle cockpits has created a desire for a simpler, more efficient human-vehicle interface. By consolidating various controls into a single, haptic feedback control device, information can be transmitted to the operator, without requiring the driver’s visual attention. In this paper, the experimental closed loop torque control of electro-rheological fluids (ERF) based resistive actuators for haptic applications is performed. ERFs are liquids that respond mechanically to electric fields by changing their properties, such as viscosity and shear stress electroactively. Using the electrically controlled rheological properties of ERFs, we developed resistive-actuators for haptic devices that can resist human operator forces in a controlled and tunable fashion. In this study, the ERF resistive-actuator analytical model is derived and experimentally verified and accurate closed loop torque control is experimentally achieved using a non-linear proportional integral controller with a feedforward loop.


2019 ◽  
Vol 121 (4) ◽  
pp. 1398-1409 ◽  
Author(s):  
Vonne van Polanen ◽  
Robert Tibold ◽  
Atsuo Nuruki ◽  
Marco Davare

Lifting an object requires precise scaling of fingertip forces based on a prediction of object weight. At object contact, a series of tactile and visual events arise that need to be rapidly processed online to fine-tune the planned motor commands for lifting the object. The brain mechanisms underlying multisensory integration serially at transient sensorimotor events, a general feature of actions requiring hand-object interactions, are not yet understood. In this study we tested the relative weighting between haptic and visual signals when they are integrated online into the motor command. We used a new virtual reality setup to desynchronize visual feedback from haptics, which allowed us to probe the relative contribution of haptics and vision in driving participants’ movements when they grasped virtual objects simulated by two force-feedback robots. We found that visual delay changed the profile of fingertip force generation and led participants to perceive objects as heavier than when lifts were performed without visual delay. We further modeled the effect of vision on motor output by manipulating the extent to which delayed visual events could bias the force profile, which allowed us to determine the specific weighting the brain assigns to haptics and vision. Our results show for the first time how visuo-haptic integration is processed at discrete sensorimotor events for controlling object-lifting dynamics and further highlight the organization of multisensory signals online for controlling action and perception. NEW & NOTEWORTHY Dexterous hand movements require rapid integration of information from different senses, in particular touch and vision, at different key time points as movement unfolds. The relative weighting between vision and haptics for object manipulation is unknown. We used object lifting in virtual reality to desynchronize visual and haptic feedback and find out their relative weightings. Our findings shed light on how rapid multisensory integration is processed over a series of discrete sensorimotor control points.


2015 ◽  
Vol 1 (1) ◽  
pp. 160-163 ◽  
Author(s):  
Carsten Neupert ◽  
Sebastian Matich ◽  
Peter P. Pott ◽  
Christian Hatzfeld ◽  
Roland Werthschützky

AbstractPseudo-haptic feedback is a haptic illusion based on a mismatch of haptic and visual perception. It is well known from applications in virtual environments. In this work, we discuss the usabiliy of the principle of pseudo-haptic feedback for teleoperation. Using pseudo-haptic feedback can ease the design of haptic medical tele-operation systems.Thereby a user’s grasping force at an isometric user interface is used to control the closing angle of an end effector of a surgical robot. To provide a realistic haptic feedback, the coupling characteristic of grasping force and end effector closing angle is changed depending on acting end effector interaction forces.With an experiment, we show the usability of pseudo-haptic feedback for discriminating compliances, comparable to the mechanical characteristic of muscles relaxed and contracted. The provided results base upon the data of 10 subjects, and 300 trails.


Author(s):  
Jinling Wang ◽  
Wen F. Lu

Virtual reality technology plays an important role in the fields of product design, computer animation, medical simulation, cloth motion, and many others. Especially with the emergence of haptics technology, virtual simulation system provides an intuitive way of human and computer interaction, which allows user to feel and touch the virtual environment. For a real-time simulation system, a physically based deformable model including complex material properties with a high resolution is required. However, such deformable model hardly satisfies the update rate of interactive haptic rendering that exceeds 1 kHz. To tackle this challenge, a real-time volumetric model with haptic feedback is developed in this paper. This model, named as Adaptive S-chain model, extends the S-chain model and integrates the energy-based wave propagation method by the proposed adaptive re-mesh method to achieve realistic graphic and haptic deformation results. The implemented results show that the nonlinear, heterogeneous, anisotropic, shape retaining material properties and large range deformation are well modeled. An accurate force feedback is generated by the proposed Adaptive S-chain model in case study which is quite close to the experiment data.


Author(s):  
Avi Fisch ◽  
Jason Nikitczuk ◽  
Brian Weinberg ◽  
Juan Melli-Huber ◽  
Constantinos Mavroidis ◽  
...  

Force-feedback methanisms have been designed to simplify and enahance the human-vehicle interface. The increase in secondary controls within vehicle cockpits has created a desire for a simpler, more efficient human-vehicle interface. Haptic system, or systems that interact with the operator’s sense of touch, can be used to consolidate various controls into fever, haptic feedback control devices, so that information can be transmitted to the operator and the operator can change control settings without requiring the driver’s visual attention. In this paper an Electro-Rheological Fluid (ERF) based actuator and mechanisms are presented that provide haptic feedback. ERSs are fluids that change their viscosity in response to an electric field. Using the electrically controlled rheological properties of ERFs, haptic devices have been developed that can resist human operator forces in a controlled and tunable fashion. The design of an ERF-based actuator and its application to a haptic knob and haptic joystick is presented. The analytical model is given, analyses are performed, and experimental systems and data are presented for the actuator. Conceptual methods for the application to the haptic devices are presented.


Sign in / Sign up

Export Citation Format

Share Document