Multiscale Terrain Characterization Using Fourier and Wavelet Transforms for Unmanned Ground Vehicles

Author(s):  
Jeremy J. Dawkins ◽  
David M. Bevly ◽  
Robert L. Jackson

This paper investigates the use of the Fourier transform and Wavelet transform as methods to supplement the more common root mean squared elevation and power spectral density methods of terrain characterization. Two dimensional terrain profiles were generated using the Weierstrass-Mandelbrot fractal equation. The Fourier and Wavelet transforms were used to decompose these terrains into a parameter set. A two degree of freedom quarter car model was used to evaluate the vehicle response before and after the terrain characterization. It was determined that the Fourier transform can be used to reduce the profile into the key frequency components. The Wavelet transform can effectively detect discontinuities of the profile and changes in the roughness of the profile. These two techniques can be added to current methods to yield a more robust terrain characterization.

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mordecai F. Raji ◽  
JianPing Li ◽  
Amin Ul Haq ◽  
Victor Ejianya ◽  
Jalaluddin Khan ◽  
...  

The heart of the current wireless communication systems (including 5G) is the Fourier transform-based orthogonal frequency division multiplex (OFDM). Over time, a lot of research has proposed the wavelet transform-based OFDM as a better replacement of Fourier in the physical layer solutions because of its performance and ability to support network-intensive applications such as the Internet of Things (IoT). In this paper, we weigh the wavelet transform performances against the future wireless application system requirements and propose guidelines and approaches for wavelet applications in 5G waveform design. This is followed by a detailed impact on healthcare. Using an image as the test data, a comprehensive performance comparison between Fourier transform and various wavelet transforms has been done considering the following 5G key performance indicators (KPIs): energy efficiency, modulation and demodulation complexity, reliability, latency, spectral efficiency, effect of transmission/reception under asynchronous transmission, and robustness to time-/frequency-selective channels. Finally, the guidelines for wavelet transform use are presented. The guidelines are sufficient to serve as approaches for tradeoffs and also as the guide for further developments.


Author(s):  
H. P. Hong ◽  
X. Z. Cui ◽  
D. Qiao

AbstractWe proposed a new iterative power and amplitude correction (IPAC) algorithm to simulate nonstationary and non-Gaussian processes. The proposed algorithm is rooted in the concept of defining the stochastic processes in the transform domain, which is elaborated and extend. The algorithm extends the iterative amplitude adjusted Fourier transform algorithm for generating surrogate and the spectral correction algorithm for simulating stationary non-Gaussian process. The IPAC algorithm can be used with different popular transforms, such as the Fourier transform, S-transform, and continuous wavelet transforms. The targets for the simulation are the marginal probability distribution function of the process and the power spectral density function of the process that is defined based on the variables in the transform domain for the adopted transform. The algorithm is versatile and efficient. Its application is illustrated using several numerical examples.


A signal from any measurement system provides insight into its genesis, thereby enabling an understanding of a certain activity or phenomenon. Seismic signals, radar echo signals, physiological signals, signals from specially fabricated instruments such as MRI, CT scanner all provide information by using an analysis that resolves the signal into its frequency components. While the Fourier transform and its fast – evaluating algorithm known as FFT are standard for such analysis, there are presently additional signal transforms in use, of which “ Wavelets” or Wavelet transform or wavelet decomposition are becoming very important. If the Fourier transform resolved the signal into its spectral components of Sine and Cosine waves, the Wavelets do the same in terms of non- sinusoidal oscillatory wave-shapes of burst – like appearance. This paper deals with the choice of wavelet transforms based on signal genesis and the interpretation required from the analysis of the signal, that one is expected to infer.


1999 ◽  
Vol 86 (3) ◽  
pp. 1081-1091 ◽  
Author(s):  
Vincent Pichot ◽  
Jean-Michel Gaspoz ◽  
Serge Molliex ◽  
Anestis Antoniadis ◽  
Thierry Busso ◽  
...  

Heart rate variability is a recognized parameter for assessing autonomous nervous system activity. Fourier transform, the most commonly used method to analyze variability, does not offer an easy assessment of its dynamics because of limitations inherent in its stationary hypothesis. Conversely, wavelet transform allows analysis of nonstationary signals. We compared the respective yields of Fourier and wavelet transforms in analyzing heart rate variability during dynamic changes in autonomous nervous system balance induced by atropine and propranolol. Fourier and wavelet transforms were applied to sequences of heart rate intervals in six subjects receiving increasing doses of atropine and propranolol. At the lowest doses of atropine administered, heart rate variability increased, followed by a progressive decrease with higher doses. With the first dose of propranolol, there was a significant increase in heart rate variability, which progressively disappeared after the last dose. Wavelet transform gave significantly better quantitative analysis of heart rate variability than did Fourier transform during autonomous nervous system adaptations induced by both agents and provided novel temporally localized information.


Author(s):  
Javier Garrido ◽  
Beatris Escobedo-Trujillo ◽  
Guillermo Miguel Martínez-Rodríguez ◽  
Oscar Fernando Silva-Aguilar

The contribution of this work is to present the design of a prototype integrated by an induction motor, a data acquisition system, accelerometers and control devices for stop and start, to generate and identify different types of faults by means of vibration analysis. in the domain: time, frequency or frequency-time, through the use of the Fourier Transform, Fast Fourier Transform or Wavelet Transforms (wavelet transform). In this prototype, failures can be generated in the induction motor such as: unbalance, different types of misalignment, mechanical looseness, and electrical failures such as broken bars or short-circuited rings, an example of a misalignment failure is presented to show the process of analysis and detection.


Author(s):  
Mawardi Bahri ◽  
Ryuichi Ashino ◽  
Rémi Vaillancourt

A two-dimensional (2D) quaternion Fourier transform (QFT) defined with the kernel [Formula: see text] is proposed. Some fundamental properties, such as convolution, Plancherel and vector differential theorems, are established. The heat equation in quaternion algebra is presented as an example of the application of the QFT to partial differential equations. The wavelet transform is extended to quaternion algebra using the kernel of the QFT.


GEOMATIKA ◽  
2018 ◽  
Vol 23 (2) ◽  
pp. 65 ◽  
Author(s):  
Mila Apriani ◽  
Admiral Musa Julius ◽  
Mahmud Yusuf ◽  
Damianus Tri Heryanto ◽  
Agus Marsono

<p align="center"><strong>ABSTRAK</strong></p><p> </p><p>Penelitian dengan analisis <em>power spectral</em> data anomali gayaberat telah banyak dilakukan untuk estimasi ketebalan sedimen. Dalam studi ini penulis melakukan analisis spektral data anomali gayaberat wilayah DKI Jakarta untuk mengetahui kedalaman sumber anomali yang bersesuaian dengan ketebalan sedimen. Data yang digunakan berupa data gayaberat dari BMKG tahun 2014 dengan 197 lokasi titik pengukuran yang tersebar di koordinat 6,08º-6,36º LU dan 106,68º-106,97º BT. Studi ini menggunakan metode <em>power spectral</em>  dengan mentransformasikan data dari domain jarak ke dalam domain bilangan gelombang memanfaatkan transformasi <em>Fourier</em>. Hasil penelitian dengan menggunakan metode transformasi <em>Fourier  </em>menunjukkan bahwa ketebalan sedimen di Jakarta dari arah selatan ke utara semakin besar, di sekitar Babakan ketebalan diperkirakan 92 meter, sekitar Tongkol, Jakarta Utara diperkirakan 331 meter.</p><p><strong> </strong></p><p><strong>Kata kunci</strong>: <em>power spectral</em>, anomali gayaberat, ketebalan sedimen</p><p align="center"><strong><em> </em></strong></p><p align="center"><strong><em>ABSTRACT</em></strong></p><p><em> </em></p><p><em>Studies of spectral analysis of gravity anomaly data have been carried out to estimate the thickness of sediment. In this study the author did spectral analysis of gravity anomaly data of DKI Jakarta area to know the depth of anomaly source which corresponds to the thickness of sediment. The data used in the form of gravity data from BMKG 2014 with 197 locations of measurement points spread in coordinates 6.08º - 6.36º N and 106.68º - 106.97º E. This study used the power spectral method by transforming the data from the distance domain into the wavenumber domain utilizing the Fourier transform. The result of the research using Fourier transform method shows that the thickness of sediment in Jakarta from south to north is getting bigger, in Babakan the thickness of the sediment is around 92 meter, in Tongkol, North Jakarta is around 331 meter.</em></p><p><strong><em> </em></strong></p><p><strong><em>Keywords</em></strong><em>: </em><em>power spectral, gravity anomaly, sediment thickness</em><em></em></p>


2021 ◽  
Author(s):  
David Howe

Statistical imputation is a field of study that attempts to fill missing data. It is commonly applied to population statistics whose data have no correlation with running time. For a time series, data is typically analyzed using the autocorrelation function (ACF), the Fourier transform to estimate power spectral densities (PSD), the Allan deviation (ADEV), trend extensions, and basically any analysis that depends on uniform time indexes. We explain the rationale for an imputation algorithm that fills gaps in a time series by applying a backward, inverted replica of adjacent live data. To illustrate, four intentional massive gaps that exceed 100% of the original time series are recovered. The L(f) PSD with imputation applied to the gaps is nearly indistinguishable from the original. Also, the confidence of ADEV with imputation falls within 90% of the original ADEV with mixtures of power-law noises. The algorithm in Python is included for those wishing to try it.


2021 ◽  
Vol 14 (14) ◽  
pp. 44-50
Author(s):  
Shriram Sharma

Frequency domain information were extracted from the time domain electric fields pertinent to the lightning positive return strokes applying Fourier transform and Wavelet transform. The electric field radiated by positive ground flashes striking the sea were recorded at 10 ns resolution at a coastal station to minimize the propagation effects. The frequency spectrum of the electric field of positive return strokes were computed applying the Fourier transform technique in the range of 10 kHz to 20 MHz owing to the fact that this range of frequency is of very much interest to the researchers and design engineers. The amplitude of the energy spectral density decreases nearly as ƒ-1 from 10 kHz to about 0.1 MHz and drops nearly as ƒ-2 up to 8 MHz.  Applying the wavelet transform technique, the same positive return strokes are found to radiate in the frequency range of 5.5 to 81 kHz with the average spread distribution of 13.6 kHz to about 30 kHz. From frequency spectrum obtained from the Fourier transform it is difficult to identify as which phase of the return stroke radiates in the higher frequency range and that in the lower frequency range, whereas, one can easily identify from the frequency spectrum obtained with the wavelet transform that ramp portion of the positive return stroke radiates in the larger spectral range as compared to that of initial peak of the return stroke.  Also, from the spectral density map obtained from wavelet transform one can easily observe the contribution of each phase in a range of frequency, which is not possible from the Fourier transform technique. Clearly, the wavelet transform is much more powerful tool to extract the frequency domain information of a non-stationary signal as compared to that of Fourier transform.


1997 ◽  
Vol 122 (1) ◽  
pp. 12-19 ◽  
Author(s):  
S. V. Kamarthi ◽  
S. R. T. Kumara ◽  
P. H. Cohen

This paper investigates a flank wear estimation technique in turning through wavelet representation of acoustic emission (AE) signals. It is known that the power spectral density of AE signals in turning is sensitive to gradually increasing flank wear. In previous methods, the power spectral density of AE signals is computed from Fourier transform based techniques. To overcome some of the limitations associated with the Fourier representation of AE signals for flank wear estimation, wavelet representation of AE signals is investigated. This investigation is motivated by the superiority of the wavelet transform over the Fourier transform in analyzing rapidly changing signals such as AE, in which high frequency components are to be studied with sharper time resolution than low frequency components. The effectiveness of the wavelet representation of AE signals for flank wear estimation is investigated by conducting a set of turning experiments on AISI 6150 steel workpiece and K68 (C2) grade uncoated carbide inserts. In these experiments, flank wear is monitored through AE signals. A recurrent neural network of simple architecture is used to relate AE features to flank wear. Using this technique, accurate flank wear estimation results are obtained for the operating conditions that are within in the range of those used during neural network training. These results compared to those of Fourier transform representation are much superior. These findings indicate that the wavelet representation of AE signals is more effective in extracting the AE features sensitive to gradually increasing flank wear than the Fourier representation. [S1087-1357(00)71401-8]


Sign in / Sign up

Export Citation Format

Share Document