scholarly journals Design and construction of a prototype for the analysis of vibrations in an induction motor for the detection of faults

Author(s):  
Javier Garrido ◽  
Beatris Escobedo-Trujillo ◽  
Guillermo Miguel Martínez-Rodríguez ◽  
Oscar Fernando Silva-Aguilar

The contribution of this work is to present the design of a prototype integrated by an induction motor, a data acquisition system, accelerometers and control devices for stop and start, to generate and identify different types of faults by means of vibration analysis. in the domain: time, frequency or frequency-time, through the use of the Fourier Transform, Fast Fourier Transform or Wavelet Transforms (wavelet transform). In this prototype, failures can be generated in the induction motor such as: unbalance, different types of misalignment, mechanical looseness, and electrical failures such as broken bars or short-circuited rings, an example of a misalignment failure is presented to show the process of analysis and detection.

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 597 ◽  
Author(s):  
Miguel Iglesias-Martínez ◽  
Jose Antonino-Daviu ◽  
Pedro Fernández de Córdoba ◽  
J. Conejero

The aim of this work is to find out, through the analysis of the time and frequency domains, significant differences that lead us to obtain one or several variables that may result in an indicator that allows diagnosing the condition of the rotor in an induction motor from the processing of the stray flux signals. For this, the calculation of two indicators is proposed: the first is based on the frequency domain and it relies on the calculation of the sum of the mean value of the bispectrum of the flux signal. The use of high order spectral analysis is justified in that with the one-dimensional analysis resulting from the Fourier Transform, there may not always be solid differences at the spectral level that enable us to distinguish between healthy and faulty conditions. Also, based on the high-order spectral analysis, differences may arise that, with the classical analysis with the Fourier Transform, are not evident, since the high order spectra from the Bispectrum are immune to Gaussian noise, but not the results that can be obtained using the one-dimensional Fourier transform. On the other hand, a second indicator based on the temporal domain that is based on the calculation of the square value of the median of the autocovariance function of the signal is evaluated. The obtained results are satisfactory and let us conclude the affirmative hypothesis of using flux signals for determining the condition of the rotor of an induction motor.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mordecai F. Raji ◽  
JianPing Li ◽  
Amin Ul Haq ◽  
Victor Ejianya ◽  
Jalaluddin Khan ◽  
...  

The heart of the current wireless communication systems (including 5G) is the Fourier transform-based orthogonal frequency division multiplex (OFDM). Over time, a lot of research has proposed the wavelet transform-based OFDM as a better replacement of Fourier in the physical layer solutions because of its performance and ability to support network-intensive applications such as the Internet of Things (IoT). In this paper, we weigh the wavelet transform performances against the future wireless application system requirements and propose guidelines and approaches for wavelet applications in 5G waveform design. This is followed by a detailed impact on healthcare. Using an image as the test data, a comprehensive performance comparison between Fourier transform and various wavelet transforms has been done considering the following 5G key performance indicators (KPIs): energy efficiency, modulation and demodulation complexity, reliability, latency, spectral efficiency, effect of transmission/reception under asynchronous transmission, and robustness to time-/frequency-selective channels. Finally, the guidelines for wavelet transform use are presented. The guidelines are sufficient to serve as approaches for tradeoffs and also as the guide for further developments.


2021 ◽  
Vol 11 (6) ◽  
pp. 2582
Author(s):  
Lucas M. Martinho ◽  
Alan C. Kubrusly ◽  
Nicolás Pérez ◽  
Jean Pierre von der Weid

The focused signal obtained by the time-reversal or the cross-correlation techniques of ultrasonic guided waves in plates changes when the medium is subject to strain, which can be used to monitor the medium strain level. In this paper, the sensitivity to strain of cross-correlated signals is enhanced by a post-processing filtering procedure aiming to preserve only strain-sensitive spectrum components. Two different strategies were adopted, based on the phase of either the Fourier transform or the short-time Fourier transform. Both use prior knowledge of the system impulse response at some strain level. The technique was evaluated in an aluminum plate, effectively providing up to twice higher sensitivity to strain. The sensitivity increase depends on a phase threshold parameter used in the filtering process. Its performance was assessed based on the sensitivity gain, the loss of energy concentration capability, and the value of the foreknown strain. Signals synthesized with the time–frequency representation, through the short-time Fourier transform, provided a better tradeoff between sensitivity gain and loss of energy concentration.


Author(s):  
Rodrigo Capobianco Guido ◽  
Fernando Pedroso ◽  
André Furlan ◽  
Rodrigo Colnago Contreras ◽  
Luiz Gustavo Caobianco ◽  
...  

Wavelets have been placed at the forefront of scientific researches involving signal processing, applied mathematics, pattern recognition and related fields. Nevertheless, as we have observed, students and young researchers still make mistakes when referring to one of the most relevant tools for time–frequency signal analysis. Thus, this correspondence clarifies the terminologies and specific roles of four types of wavelet transforms: the continuous wavelet transform (CWT), the discrete wavelet transform (DWT), the discrete-time wavelet transform (DTWT) and the stationary discrete-time wavelet transform (SDTWT). We believe that, after reading this correspondence, readers will be able to correctly refer to, and identify, the most appropriate type of wavelet transform for a certain application, selecting relevant and accurate material for subsequent investigation.


2016 ◽  
Vol 24 (3) ◽  
pp. 339-349
Author(s):  
Elena-Gratiela Robe-Voinea ◽  
Raluca Vernic

AbstractIn this work, we consider the multivariate aggregate model introduced in [11], model that takes into account the case when different types of claims affect in the same time an insurance portfolio under some specific assumptions related to the number of claims. For the probability function of the corresponding multivariate compound distribution, [11] obtained an exact recursive formula proved using the properties of the probability generating function. In this paper, we present a new shorter proof of the same formula that we also extend to a new form. Moreover, we present an alternative approximate method to evaluate the compound distribution based on the Fourier transform, and we compare both methods on a numerical example.


2007 ◽  
Vol 19 (05) ◽  
pp. 331-339
Author(s):  
S. M. Debbal ◽  
F. Bereksi-Reguig

This paper presents the analysis and comparisons of the short time Fourier transform (STFT) and the continuous wavelet transform techniques (CWT) to the four sounds analysis (S1, S2, S3 and S4). It is found that the spectrogram short-time Fourier transform (STFT), cannot perfectly detect the internals components of these sounds that the continuous wavelet transform. However, the short time Fourier transform can provide correctly the extent of time and frequency of these four sounds. Thus, the STFT and the CWT techniques provide more features and characteristics of the sounds that will hemp physicians to obtain qualitative and quantitative measurements of the time-frequency characteristics.


1996 ◽  
Vol 14 (12) ◽  
pp. 1513-1525
Author(s):  
J. Lilensten ◽  
P. O. Amblard

Abstract. We demonstrate the usefulness of some signal-processing tools for the EISCAT data analysis. These tools are somewhat less classical than the familiar periodogram, squared modulus of the Fourier transform, and therefore not as commonly used in our community. The first is a stationary analysis, "Thomson's estimate'' of the power spectrum. The other two belong to time-frequency analysis: the short-time Fourier transform with the spectrogram, and the wavelet analysis via the scalogram. Because of the highly non-stationary character of our geophysical signals, the latter two tools are better suited for this analysis. Their results are compared with both a synthetic signal and EISCAT ion-velocity measurements. We show that they help to discriminate patterns such as gravity waves from noise.


Author(s):  
Valeriy Zadiraka ◽  
Liliya Luts ◽  
Inna Shvidchenko

The paper presents some common elements (invariants) of optimal integration of rapidly oscillatory functions for the different types of oscillations, in particular, for calculating the Fourier transform from finite functions, wavelet transform, and Bessel transform. Their brief description is given. The application of the invariants allows to increase the potential of quadrature formulas due to the fullest use of apriori information. Invariants form the basis of computer technology of integration of rapidly oscillatory functions with a given accuracy with limited computational resources.


2008 ◽  
Vol 86 (4) ◽  
pp. 597-600 ◽  
Author(s):  
S R Valluri ◽  
M D Fried

The master equation described by Badri Krishnan et al. (Phys Rev. D, 70, 082001 (2004)) for the time-frequency pattern using the F-statistic is studied in the context of Chebyshev-polynomial modified spindown parameters for the case of gravitational wave pulsar signals. The Chebyshev-polynomial method enables an analytic and numeric evaluation of the Fourier transform (FT) for both the non-demodulated and F-statistic demodulated FT.PACS Nos.: 04.30.Tv, 95.85.sz, 02.30.Gp, 02.40.Re


2013 ◽  
Vol 24 (04) ◽  
pp. 1350017 ◽  
Author(s):  
JOSÉ R. A. TORREÃO ◽  
SILVIA M. C. VICTER ◽  
JOÃO L. FERNANDES

We introduce a time-frequency transform based on Gabor functions whose parameters are given by the Fourier transform of the analyzed signal. At any given frequency, the width and the phase of the Gabor function are obtained, respectively, from the magnitude and the phase of the signal's corresponding Fourier component, yielding an analyzing kernel which is a representation of the signal's content at that particular frequency. The resulting Gabor transform tunes itself to the input signal, allowing the accurate detection of time and frequency events, even in situations where the traditional Gabor and S-transform approaches tend to fail. This is the case, for instance, when considering the time-frequency representation of electroencephalogram traces (EEG) of epileptic subjects, as illustrated by the experimental study presented here.


Sign in / Sign up

Export Citation Format

Share Document