Navigation of an Underwater Remotely Operated Vehicle Based on Extended Kalman Filter

Author(s):  
Blanca V. Martínez ◽  
Daniel A. Sierra ◽  
Rodolfo Villamizar

An algorithm to estimate positions, orientations, linear velocities and angular rates of an Underwater Remotely Operated Vehicle (UROV), based on the Extended Kalman Filter (EKF), is presented. The complete UROV kinematic and dynamic models are combined to obtain the process equation, and measurements correspond to linear accelerations and angular rates provided by an Inertial Measurement Unit (IMU). The proposed algorithm is numerically validated and its results are compared with simulated UROV states. A discussion about the influence of the covariance matrices on the estimation error and overall filter performance is also included. As a conclusion, the proposed algorithm estimates properly the UROV linear velocities and angular rates from IMU measurements, and the noise in estimated states is reduced in about one order of magnitude.

2020 ◽  
pp. 002029402091770
Author(s):  
Li Xing ◽  
Xiaowei Tu ◽  
Weixing Qian ◽  
Yang Jin ◽  
Pei Qi

The paper proposes an angular velocity fusion method of the microelectromechanical system inertial measurement unit array based on the extended Kalman filter with correlated system noises. In the proposed method, an adaptive model of the angular velocity is built according to the motion characteristics of the vehicles and it is regarded as the state equation to estimate the angular velocity. The signal model of gyroscopes and accelerometers in the microelectromechanical system inertial measurement unit array is used as the measurement equation to fuse and estimate the angular velocity. Due to the correlation of the state and measurement noises in the presented fusion model, the traditional extended Kalman filter equations are optimized, so as to accurately and reliably estimate the angular velocity. By simulating angular rates in different motion modes, such as constant and change-in-time angular rates, it is verified that the proposed method can reliably estimate angular rates, even when the angular rate has been out of the microelectromechanical system gyroscope measurement range. And results show that, compared with the traditional angular rate fusion method of microelectromechanical system inertial measurement unit array, it can estimate angular rates more accurately. Moreover, in the kinematic vehicle experiments, the performance advantage of the proposed method is also verified and the angular rate estimation accuracy can be increased by about 1.5 times compared to the traditional method.


2019 ◽  
Vol 39 (1) ◽  
pp. 143-157
Author(s):  
Elias Bjørne ◽  
Edmund F Brekke ◽  
Torleiv H Bryne ◽  
Jeff Delaune ◽  
Tor Arne Johansen

The problem of estimating velocity from a monocular camera and calibrated inertial measurement unit (IMU) measurements is revisited. For the presented setup, it is assumed that normalized velocity measurements are available from the camera. By applying results from nonlinear observer theory, we present velocity estimators with proven global stability under defined conditions, and without the need to observe features from several camera frames. Several nonlinear methods are compared with each other, also against an extended Kalman filter (EKF), where the robustness of the nonlinear methods compared with the EKF are demonstrated in simulations and experiments.


Author(s):  
Daero Lee

This paper presents an extended Kalman filter derivation for loosely coupled GPS (Global Positioning System)/INS (Inertial Navigation System) integration based on quaternion attitude representation using the Earth-Centered Earth (ECEF) Frame. In this loosely coupling integration, both the position and velocity estimates from GPS receiver are used as the measurements to extended Kalman filter, and then they are integrated with inertial measurements from inertial measurement units (IMU) to estimate the attitude, position and velocity of an air vehicle. The velocity estimates which have centimeter level estimation error from the GPS receiver are used to improve the filter performance. For attitude estimation, the global attitude parameterization is given by a quaternion and a multiplicative quaternion-error approach is used to guarantee a normalization constraint of quaternion in the filter. Simulation results are shown to obtain the estimation of the attitude, position, velocity, biases and scale factors and to evaluate the performance of the EKF with the measurement combination composed of the two different t


Author(s):  
Parag Jose Chacko ◽  
Haneesh K. M. ◽  
Joseph X. Rodrigues

An efficient state estimator is critical for the development of an autonomous plug-in hybrid electric vehicle (PHEV). To achieve effective autonomous regulation of the powertrain, the latency period and estimation error should be minimum. In this work, a novel error state extended kalman filter (ES-EKF)-based state estimator is developed to perform sensor fusion of data from light detection and ranging sensor (LIDAR), the inertial measurement unit sensor (IMU), and the global positioning system (GPS) sensors, and the estimation error is minimized to reduce latency. The estimator will provide information to an intelligent energy management system (IEMS) to regulate the powertrain for effective load sharing in the PHEV. The integration of the sensor fusion data with the vehicle model is simulated in MATLAB environment. The PHEV model is fed with the proposed state estimator output, and the response parameters of the PHEV are monitored.


2014 ◽  
Vol 621 ◽  
pp. 525-532 ◽  
Author(s):  
Man Tian Li ◽  
Cong Wei Wang ◽  
Peng Fei Wang

Measuring robots’ real-time velocity correctly is important for locomotion control. Inertial Measurement Unit (IMU) is widely used for velocity measurement. Limited by the bias and random error, IMU alone often can’t meet the requirement. This paper makes use of Extended Kalman Filter (EKF) to fuse kinematics and IMU, and inhibits the drift successfully. We calibrate the bias and recognize the random errors of IMU. Then the forward kinematics of legs is established and the EKF algorithm for velocity estimation is designed based on IMU and kinematics. Finally, the presented algorithm is validated in simulation and on a quadruped robot based on hydraulic driver in trotting gait.


Author(s):  
Mohadese Jahanian ◽  
Amin Ramezani ◽  
Ali Moarefianpour ◽  
Mahdi Aliari Shouredeli

One of the most significant systems that can be expressed by partial differential equations (PDEs) is the transmission pipeline system. To avoid the accidents that originated from oil and gas pipeline leakage, the exact location and quantity of leakage are required to be recognized. The designed goal is a leakage diagnosis based on the system model and the use of real data provided by transmission line systems. Nonlinear equations of the system have been extracted employing continuity and momentum equations. In this paper, the extended Kalman filter (EKF) is used to detect and locate the leakage and to attenuate the negative effects of measurement and process noises. Besides, a robust extended Kalman filter (REKF) is applied to compensate for the effect of parameter uncertainty. The quantity and the location of the occurred leakage are estimated along the pipeline. Simulation results show that REKF has better estimations of the leak and its location as compared with that of EKF. This filter is robust against process noise, measurement noise, parameter uncertainties, and guarantees a higher limit for the covariance of state estimation error as well. It is remarkable that simulation results are evaluated by OLGA software.


2014 ◽  
Vol 602-605 ◽  
pp. 2958-2961
Author(s):  
Tao Lai ◽  
Guang Long Wang ◽  
Wen Jie Zhu ◽  
Feng Qi Gao

Micro inertial measurement unit integration storage test system is a typical multi-sensor information fusion system consists of microsensors. The Federated Kalman filter is applied to micro inertial measurement unit integration storage test system. The general structure and characteristics of Federated Kalman filter is expounded. The four-order Runge-Kutta method based on quaternion differential equation was used to dispose the output angular rate data from gyroscope, and the recurrence expressions was established too. The control system based ARM Cortex-M4 master-slave structure is adopted in this paper. The result shown that the dimensionality reduced algorithm significantly reduces implementation complexity of the method and the amount computation. The filtering effect and real-time performance have much increased than traditionally method.


Sign in / Sign up

Export Citation Format

Share Document