Resting State EEG Multiscale Entropy Dynamics in Mild Cognitive Impairment and Early Alzheimer’s Disease

Author(s):  
Joseph McBride ◽  
Xiaopeng Zhao ◽  
Nancy Munro ◽  
Gregory Jicha ◽  
Charles Smith ◽  
...  

Mild cognitive impairment (MCI) is a neurological condition related to early stages of dementia such as Alzheimer’s disease (AD). This study explores non-event-related multiscale entropy (MSE) measures as features for effectively discriminating between normal aging, MCI, and AD participants. Resting EEG records from 48 age-matched participants (mean age 75.7 years) — 15 normal controls (NC), 16 MCI, and 17 early AD — are examined. Multiscale entropy curves are computed for short EEG segments and averaged over the segments. Binary discriminations among the three groups are conducted using support vector machine models. Leave-one-out cross-validation accuracies of 80.7% (p-value <0.0018) for MCI vs. NC, 87.5% (p-value <1.322E−4) for AD vs. NC, and 90.9% (p-value <2.788E−5) for MCI vs. AD are achieved. Results demonstrate influence of cognitive deficits on multiscale entropy dynamics of non-event-related EEG.

2018 ◽  
Vol 45 (1-2) ◽  
pp. 38-48 ◽  
Author(s):  
Chavit Tunvirachaisakul ◽  
Thitiporn Supasitthumrong ◽  
Sookjareon Tangwongchai ◽  
Solaphat Hemrunroj ◽  
Phenphichcha Chuchuen ◽  
...  

Background: The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) developed a neuropsychological battery (CERAD-NP) to screen patients with Alzheimer’s dementia. Mild cognitive impairment (MCI) has received attention as a pre-dementia stage. Objectives: To delineate the CERAD-NP features of MCI and their clinical utility to externally validate MCI diagnosis. Methods: The study included 60 patients with MCI, diagnosed using the Clinical Dementia Rating, and 63 normal controls. Data were analysed employing receiver operating characteristic analysis, Linear Support Vector Machine, Random Forest, Adaptive Boosting, Neural Network models, and t-distributed stochastic neighbour embedding (t-SNE). Results: MCI patients were best discriminated from normal controls using a combination of Wordlist Recall, Wordlist Memory, and Verbal Fluency Test. Machine learning showed that the CERAD features learned from MCI patients and controls were not strongly predictive of the diagnosis (maximal cross-validation 77.2%), whilst t-SNE showed that there is a considerable overlap between MCI and controls. Conclusions: The most important features of the CERAD-NP differentiating MCI from normal controls indicate impairments in episodic and semantic memory and recall. While these features significantly discriminate MCI patients from normal controls, the tests are not predictive of MCI.


2021 ◽  
Vol 7 ◽  
Author(s):  
Ping Zhou ◽  
Shuqing Jiang ◽  
Lun Yu ◽  
Yabo Feng ◽  
Chuxin Chen ◽  
...  

In recent years, interest has grown in using computer-aided diagnosis (CAD) for Alzheimer's disease (AD) and its prodromal stage, mild cognitive impairment (MCI). However, existing CAD technologies often overfit data and have poor generalizability. In this study, we proposed a sparse-response deep belief network (SR-DBN) model based on rate distortion (RD) theory and an extreme learning machine (ELM) model to distinguish AD, MCI, and normal controls (NC). We used [18F]-AV45 positron emission computed tomography (PET) and magnetic resonance imaging (MRI) images from 340 subjects enrolled in the ADNI database, including 116 AD, 82 MCI, and 142 NC subjects. The model was evaluated using five-fold cross-validation. In the whole model, fast principal component analysis (PCA) served as a dimension reduction algorithm. An SR-DBN extracted features from the images, and an ELM obtained the classification. Furthermore, to evaluate the effectiveness of our method, we performed comparative trials. In contrast experiment 1, the ELM was replaced by a support vector machine (SVM). Contrast experiment 2 adopted DBN without sparsity. Contrast experiment 3 consisted of fast PCA and an ELM. Contrast experiment 4 used a classic convolutional neural network (CNN) to classify AD. Accuracy, sensitivity, specificity, and area under the curve (AUC) were examined to validate the results. Our model achieved 91.68% accuracy, 95.47% sensitivity, 86.68% specificity, and an AUC of 0.87 separating between AD and NC groups; 87.25% accuracy, 79.74% sensitivity, 91.58% specificity, and an AUC of 0.79 separating MCI and NC groups; and 80.35% accuracy, 85.65% sensitivity, 72.98% specificity, and an AUC of 0.71 separating AD and MCI groups, which gave better classification than other models assessed.


2018 ◽  
Vol 15 (3) ◽  
pp. 219-228 ◽  
Author(s):  
Jiri Cerman ◽  
Ross Andel ◽  
Jan Laczo ◽  
Martin Vyhnalek ◽  
Zuzana Nedelska ◽  
...  

Background: Great effort has been put into developing simple and feasible tools capable to detect Alzheimer's disease (AD) in its early clinical stage. Spatial navigation impairment occurs very early in AD and is detectable even in the stage of mild cognitive impairment (MCI). Objective: The aim was to describe the frequency of self-reported spatial navigation complaints in patients with subjective cognitive decline (SCD), amnestic and non-amnestic MCI (aMCI, naMCI) and AD dementia and to assess whether a simple questionnaire based on these complaints may be used to detect early AD. Method: In total 184 subjects: patients with aMCI (n=61), naMCI (n=27), SCD (n=63), dementia due to AD (n=20) and normal controls (n=13) were recruited. The subjects underwent neuropsychological examination and were administered a questionnaire addressing spatial navigation complaints. Responses to the 15 items questionnaire were scaled into four categories (no, minor, moderate and major complaints). Results: 55% of patients with aMCI, 64% with naMCI, 68% with SCD and 72% with AD complained about their spatial navigation. 38-61% of these complaints were moderate or major. Only 33% normal controls expressed complaints and none was ranked as moderate or major. The SCD, aMCI and AD dementia patients were more likely to express complaints than normal controls (p's<0.050) after adjusting for age, education, sex, depressive symptoms (OR for SCD=4.00, aMCI=3.90, AD dementia=7.02) or anxiety (OR for SCD=3.59, aMCI=3.64, AD dementia=6.41). Conclusion: Spatial navigation complaints are a frequent symptom not only in AD, but also in SCD and aMCI and can potentially be detected by a simple and inexpensive questionnaire.


Neurology ◽  
2002 ◽  
Vol 59 (7) ◽  
pp. 1034-1041 ◽  
Author(s):  
M. Storandt ◽  
E. A. Grant ◽  
J. P. Miller ◽  
J. C. Morris

2012 ◽  
Vol 38 (4) ◽  
pp. 860-880 ◽  
Author(s):  
Robert M. Nosofsky ◽  
Stephen E. Denton ◽  
Safa R. Zaki ◽  
Anne F. Murphy-Knudsen ◽  
Frederick W. Unverzagt

2021 ◽  
Vol 15 ◽  
Author(s):  
Justine Staal ◽  
Francesco Mattace-Raso ◽  
Hennie A. M. Daniels ◽  
Johannes van der Steen ◽  
Johan J. M. Pel

BackgroundResearch into Alzheimer’s disease has shifted toward the identification of minimally invasive and less time-consuming modalities to define preclinical stages of Alzheimer’s disease.MethodHere, we propose visuomotor network dysfunctions as a potential biomarker in AD and its prodromal stage, mild cognitive impairment with underlying the Alzheimer’s disease pathology. The functionality of this network was tested in terms of timing, accuracy, and speed with goal-directed eye-hand tasks. The predictive power was determined by comparing the classification performance of a zero-rule algorithm (baseline), a decision tree, a support vector machine, and a neural network using functional parameters to classify controls without cognitive disorders, mild cognitive impaired patients, and Alzheimer’s disease patients.ResultsFair to good classification was achieved between controls and patients, controls and mild cognitive impaired patients, and between controls and Alzheimer’s disease patients with the support vector machine (77–82% accuracy, 57–93% sensitivity, 63–90% specificity, 0.74–0.78 area under the curve). Classification between mild cognitive impaired patients and Alzheimer’s disease patients was poor, as no algorithm outperformed the baseline (63% accuracy, 0% sensitivity, 100% specificity, 0.50 area under the curve).Comparison with Existing Method(s)The classification performance found in the present study is comparable to that of the existing CSF and MRI biomarkers.ConclusionThe data suggest that visuomotor network dysfunctions have potential in biomarker research and the proposed eye-hand tasks could add to existing tests to form a clear definition of the preclinical phenotype of AD.


2009 ◽  
Vol 15 (2) ◽  
pp. 231-238 ◽  
Author(s):  
HYEON-AE JEON ◽  
KYOUNG-MIN LEE

AbstractWhile it is well known that picture naming (PN) is impaired in Alzheimer’s disease (AD), sound naming (SN) has not been thoroughly investigated. We postulated that SN might be impaired more severely and earlier than PN, given the early involvement of the temporal cortex by AD-related pathology. SN and PN were assessed in 21 normal participants, 40 patients with mild cognitive impairment (MCI), and 27 patients in early stages of AD. Our results showed that SN accuracy and latency were more sensitive to advancing pathology in AD than PN accuracy and latency. SN was more useful and specific in distinguishing MCI patients from normal participants and therefore in potentially identifying the subset of MCI patients who already have impairment in more than one cognitive domain and may actually have incipient AD. These findings indicate a potential diagnostic utility of SN for early detection of the disease. Furthermore, even though most AD patients demonstrated more or less comparable impairment in both tasks, some were disproportionately impaired on SN and others were differentially impaired on PN. Future studies may be able to show that these discrepant groups correspond to patients with right and left hemisphere predominant AD, respectively. (JINS, 2009, 15, 231–238.)


Sign in / Sign up

Export Citation Format

Share Document